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Summary. — In this paper we discuss a mechanism for the dynamical genera-
tion of flavor mixing, in the framework of the Nambu-Jona Lasinio model. Our
approach is illustrated both with the conventional operatorial formalism and with
functional integral and ensuing one-loop effective action. The results obtained are
briefly discussed.

PACS 12.15.Ff – Quark and lepton masses and mixing.
PACS 03.70.+k – Theory of quantized fields.

1. – Introduction

The phenomenon of mixing of fields subject to different interactions is of considerable
importance in current particle-physics phenomenology. This is particularly the case for
flavor oscillations of neutrinos or oscillations of strangeness or beauty in certain mesons
(e.g., K0-K̄0 or B0-B̄0 mixing, where the mixing is also closely related to the mechanism
of CP violation). It has been observed in recent years [1] that the usual mixing trans-
formations, which are simple rotations at the level of quantum fields, do indeed contain
Bogoliubov transformations at the level of annihilation/creation operators. This key
observation directly implies that the vacuum for neutrino fields with definite flavor, the
flavor vacuum, has the non-trivial structure of a condensate of particle/antiparticle pairs.
Starting from this initial insight, a number of consequences have been derived, including
corrections to the standard quantum-mechanical Pontecorvo oscillation formulas [2].

In this context a natural question arises whether the above vacuum structure could
not be seen as the result of a dynamical mechanism for the mixing generation [3], in
some sense akin to the mechanism that is responsible for dynamical mass generation
in Nambu-Jona Lasinio (NJL) model [4]. While pondering this possibility, one should
not ignore a remarkable formulation introduced in 1964 by Umezawa, Takahashi and
Kamefuchi [5]. There the authors established a connection between the inequivalent
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representations of the commutation relations and the mechanism of dynamical breaking
of symmetry and dynamical generation of the fermion mass. They studied, in particular,
the NJL model and the associated gap equation. By following this formalism, it has been
recently demonstrated [6] that in the case of a two-flavors NJL model, mixing terms arise
in connection with particular inequivalent representations, which are not usually taken
into account.

In this paper, we extend the above (purely operatorial) analysis in terms of functional
integrals and associated one-loop effective action technique. The results of our study seem
to confirm our previous findings [6] and lead in a straightforward way to the gap equations
which account for the generation of both masses and mixing terms in the theory.

2. – Dynamical generation of mass in the UTK formalism

Following ref. [5], we consider a system of Fermi fields enclosed in a finite-volume
(volume V ) box. Let |0〉 be a fiducial reference vacuum state with the corresponding
set of annihilation operators for particles and antiparticles, ar

k and br
k, satisfying the

anticommutation relations{
ar
k, as†

l

}
=
{

br
k, bs†

l

}
= δk,lδrs ,(1)

with other anticommutators being zero. Here r = 1, 2 is the helicity index and

k =
2π

V 1/3
n, n1, n2, n3 integers .(2)

The plane-wave expansion for the field is

ψ(x) =
1√
V

∑
k,r

[
ur
k ar

k eik·x + vr
k br†

k e−ik·x
]
,(3)

where the spinor wave functions ur
k, vr

k carry the time dependence through the factors
e−iωkt and eiωkt, respectively, with ωk =

√
k2 + m2.

In quantum field theory (QFT) the Hilbert space is not uniquely defined: the infinite
number of degrees of freedom allows for the existence of unitarily inequivalent represen-
tations of the canonical (anti)-commutation relations (CAR) [7-10]. This fact is at the
heart of the symmetry breaking mechanism [7,8]. On the other hand, in QM, where the
volume is taken to be finite and number of particles is fixed, all the representations of
the CAR are unitarily (i.e., physically) equivalent. Thus, in order to formulate the QFT
Hilbert-space structure we start with a regulated finite-volume space and look for uni-
tary transformations of the vacuum state |0〉 that satisfy simple (physically motivated)
consistency criteria. Then, in the large volume limit, we construct all possible candidates
physical Fock spaces.

The generator of such (finite volume) unitary transformations G can be parametrized
with only two parameters ϑr

k and ϕr
k, namely

G(ϑ, ϕ) = exp

⎡
⎣∑

k,r

ϑr
k

(
br
−kar

ke−iϕr
k − ar†

k br†
−keiϕr

k

)⎤⎦ .(4)
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The invariance of G under rotation ensures that ϑ and ϕ depend only on k ≡ |k|. In
addition, it can be argued [5] that ϑ is independent of r and ϕr

k = −(−1)rϕk. The
transformations generated by G are

αr
k = G(ϑ, ϕ)ar

kG†(ϑ, ϕ) = cos ϑk ar
k + eiϕr

k sin ϑk br†
−k ,(5)

βr
k = G(ϑ, ϕ)br

kG†(ϑ, ϕ) = cos ϑk br
k − eiϕr

k sin ϑk ar†
−k .(6)

These are Bogoliubov transformations, preserving the canonical commutation rela-
tions. The labels {ϑk, ϕr

k} yield the most general parametrization for the Bogoliubov
transformation of creation and annihilation operators. The vacuum state for the αr

k and
βr
k operator is given by

|0(ϑ, ϕ)〉 = G(ϑ, ϕ)|0〉 =
∏
k,r

(
cos ϑk − eiϕr

k sin ϑk ar†
k br†

−k

)
|0〉 .(7)

In the finite-volume limit all vacuum states |0(ϑ, ϕ)〉 are equivalent (i.e., they describe
the same unique physical ground state). In the infinite-volume limit the situation is
drastically different. This can be seen by noticing that from (7) we have (for V → ∞)

〈0|0(ϑ, ϕ)〉 = exp

⎡
⎣∑

k,r

log(sin ϑk)

⎤
⎦ = exp

[
V

(2π)3

∫
d3k log(sin2 ϑk)

]
→ 0 .(8)

More generally, in the infinite-volume limit all the physical vacua with different ϑ’s and
ϕ’s are orthogonal, i.e.,

〈0(ϑ, ϕ)|0(ϑ′, ϕ′)〉 → 0 , ϑ′, ϕ′ �= ϑ, ϕ .(9)

The free field (3) can be expressed in the representation {ϑ, ϕ} by means of the
Bogoliubov transformation (5)-(6)

ψ(x) =
1√
V

∑
k,r

[
ur
k(ϑ, ϕ)αr

k eik·x + vr
k(ϑ, ϕ)βr†

k e−ik·x
]
,(10)

with αr
k |0(ϑ, ϕ)〉 = βr

k |0(ϑ, ϕ)〉 = 0 . The Dirac spinors ur
k(ϑ, ϕ) and vr

k(ϑ, ϕ) are
related with the fiducial representation spinors via the relations

ur
k(ϑ, ϕ) = ur

k cos ϑk + vr
−k e−iϕr

k sin ϑk ,(11)

vr
k(ϑ, ϕ) = vr

k cos ϑk − ur
−k eiϕr

k sin ϑk .(12)

It is to be remarked that the expressions (10) and (3) represent indeed the same opera-
tor, expanded in terms of different sets of creation/annihilation operators which act on
different (orthogonal) vacua.

Let us then consider the so-called V -limit procedure introduced by Umezawa et al. in
ref. [5]. One takes matrix elements of QFT operators, say Q, between states |Φi(ϑ, ϕ)〉,
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generated from the vacuum state |0(ϑ, ϕ)〉 by a suitable action of creation and annihi-
lation operators. The index “i” is a multi-index distinguishing various states, and the
two real parameters ϑ and ϕ label the different (unitarily inequivalent) vacuum states.
In particular the V -limit of Q with respect to a representation characterized by the
parameters {ϑ, ϕ} is defined as

〈Φi(ϑ, ϕ)|V -lim[Q]|Φj(ϑ, ϕ)〉 ≡ lim
V →∞

〈Φi(ϑ, ϕ)|Q|Φj(ϑ, ϕ)〉 ,(13)

for all i and j. The matrix element on the right-hand side of (13) is operationally
calculated by phrasing the full (Heisenberg-picture) fields ψ present in Q in terms of the
asymptotic fields ψin enclosed in a finite-volume (volume V ) box. The mapping between
ψ and ψin is the Yang-Feldman equation (see also [7,11,12]). Formally it can be written
in the form [7]; ψ(x) = S†T (Sψin(x)), where S and T are the S-matrix and time-ordering
symbol, respectively.

Thanks to this result, we can calculate the following useful quantities:

Cp ≡ i lim
V →∞

〈0(ϑ, ϕ)|ψ̄(x)γ5ψ(x)|0(ϑ, ϕ)〉(14)

=
2

(2π)3

∫
d3k sin 2ϑk sin ϕk ,

Cs ≡ lim
V →∞

〈0(ϑ, ϕ)|ψ̄(x)ψ(x)|0(ϑ, ϕ)〉

= − 2
(2π)3

∫
d3k

[
m

ωk
cos 2ϑk − k

ωk
sin 2ϑk cos ϕk

]
.

We now consider the dynamical mass generation in NJL model for the case of one flavor.
Here we shall follow closely the simplified presentation given in [6], with the aim to
expose the main logical passages of treatment given in ref. [5]. The NJL is described by
the following Hamiltonian

H = H0 + Hint ,(15)

H0 =
∫

d3x ψ̄ (−iγ ·∇ + m) ψ ,(16)

Hint = λ

∫
d3x

[(
ψ̄ψ
)2 − (ψ̄γ5ψ

)2]
.(17)

We take in general m �= 0, the case m = 0 is then obtained as a special case.
Considering the lowest order in the Yang-Feldman expansion, the V -limit of H gives

V -lim [H] = H̄0 + c-number ,(18)

H̄0 = H0 + δH0 , δH0 =
∫

d3x
(
f ψ̄ψ + ig ψ̄γ5ψ

)
,(19)

with f = λCs, g = λCp.
Until now the state |0(ϑ, ϕ)〉 is not specified: this choice fixes the representation and

has to be done on physical basis. It is then required [5] that the V -limit of the full
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Hamiltonian H should describe the quasiparticle (free) Hamiltonian with the correct
relativistic dispersion relation, namely

H̄0 =
∑

r

Ek

(
αr†

k αr
k + βr†

k βr
k

)
+ W0 ,(20)

with Ek =
√

k2 + M2. The mass M corresponds to the mass of elementary excitations
(or quasiparticles) over the physical vacuum. W0 is the vacuum energy (or condensate
density) and is given [5] by W0 = −2

∫
d3kEk.

One finds that the condition (20) is satisfied(1) when the following conditions hold

cos(2ϑk) =
1

Ek

[
m

ωk
f(ϑ, ϕ) + ωk

]
,(21)

sin(ϕr
k) = g(ϑ, ϕ)(−1)r

[
g2(ϑ, ϕ) +

k2

ω2
k

f2(ϑ, ϕ)
]− 1

2

,(22)

M2(ϑ, ϕ) = (m + f(ϑ, ϕ))2 + g2(ϑ, ϕ) = (m + λCs)2 + λ2C 2
p ,(23)

Since f and g depend on the parameters {ϑ, ϕ}, the above solutions give rise to two
non-linear equations

f = f(ϑ(f, g), ϕ(f, g)) and g = g(ϑ(f, g), ϕ(f, g)) ,(24)

which can be recasted as

Cp

(
1 +

2λ

(2π)3

∫
d3k
Ek

)
= 0 ,(25)

Cs

(
1 +

2λ

(2π)3

∫
d3k
Ek

)
= − 2m

(2π)3

∫
d3k
Ek

.(26)

These equations determine the mass M . In [5] two possibilities are discussed

Cp = 0, M = m − 2λ

(2π)3
M

∫
d3k
Ek

,(27)

m = 0, 1 +
2λ

(2π)3

∫
d3k
Ek

= 0.(28)

The second case, eq. (28), is only allowed for λ < 0 and for m = 0 is nothing but the gap
equation! For m �= 0, eq. (27) gives perturbative corrections to the mass

M = m − 2λ

(2π)3
m

∫
d3k
ωk

+ · · · .(29)

On the other hand, the solution eq. (28) has a non-perturbative character and expresses
the dynamical breakdown of (chiral) symmetry.

(1) The condition Ek > 0 is also enforced.



6 M. BLASONE et al.

3. – Dynamical generation of flavor mixing - Operatorial approach

We now consider the dynamical symmetry breaking for the case of two fermion fields,
for which in general a non-diagonal mass matrix will be obtained, thus generating flavor
mixing in addition to non-zero masses. We expose first the operatorial approach, as
analyzed in [6]. Here the notation is over-simplified, spacetime dependence is omitted as
well as momentum and helicity indices. Let us consider a fermion field doublet ψ whose
Hamiltonian density is given as

H = H0 + Hint ,(30)

H0 = ψ̄ (−iγ ·∇ + M0) ψ ,(31)

with γ being a shorthand for 1I ⊗ γ with 1I being the 2 × 2 identity matrix and

ψ =
(

ψI

ψII

)
and M0 =

(
mI 0
0 mII

)
.(32)

The interaction Hamiltonian Hint can be assumed in the generic form

Hint =
(
ψ̄ Γ ψ

) (
ψ̄ Γ′ ψ

)
,(33)

where Γ and Γ′ are some doublet spinor matrices. For simplicity in this case we con-
sider only the scalar counterterms, i.e., we set gI = gII = 0. This in turn implies that
ϕI = ϕII = 0 in the Bogoliubov transformations for fields ψI and ψII . This assumption
simplifies considerably the following treatment, without altering the main results of our
analysis.

The term δH0 arising from V -limit has now generally the following form:

δH0 = δHI
0 + δHII

0 + δHmix(34)

= fI ψ̄IψI + fII ψ̄IIψII + h
(
ψ̄IψII + ψ̄IIψI

)
.

Instead of the Bogoliubov transformations eqs. (5)-(6), we have now a more general 4×4
canonical transformation, defining inequivalent representations. This can be conveniently
parametrized as

⎡
⎢⎢⎢⎢⎣

αA

β†
A

αB

β†
B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cθ ρ
AI cθ λ

AI sθ ρ
AII sθ λ

AII

−cθ λ
AI cθ ρ

AI −sθ λ
AII sθ ρ

AII

−sθ ρ
BI −sθ λ

BI cθ ρ
BII cθ λ

BII

sθ λ
BI −sθ ρ

BI −cθ λ
BII cθ ρ

BII

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

aI

b†
I

aII

b†
II

⎤
⎥⎥⎥⎥⎦ ,(35)

where cθ ≡ cos θ, sθ ≡ sin θ and

ρab ≡ cos
χa − χb

2
, λab ≡ sin

χa − χb

2
, χa ≡ cot−1

[
k

ma

]
,(36)

with a, b = I, II, A,B. The transformation (35) contains three parameters (θ,mA,mB)
to be fixed in terms of the quantities (fI , fII , h) on the basis of physical considerations.
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We first consider the case in which no mixing arises after the V -limit. Then the
Hamiltonian reduces into the sum of two Hamiltonians, each of the form as in eq. (19)

H̄0 =
∑

i=I,II

(
Hi

0 + δHi
0

)
.(37)

In this case, the Bogoliubov matrix (35) becomes block diagonal

⎡
⎢⎢⎢⎢⎣

αA

β†
A

αB

β†
B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

ρ
AI λ

AI 0 0

−λ
AI ρ

AI 0 0

0 0 ρ
BII λ

BII

0 0 −λ
BII ρ

BII

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

aI

b†
I

aII

b†
II

⎤
⎥⎥⎥⎥⎦(38)

and the diagonalization condition reads (cf. eq. (23))

mA = mI + fI , mB = mII + fII .(39)

If we make the identification

ϑi =
1
2

(
cot−1

[
k

ma

]
− cot−1

[
k

mi

])
, (a, i) = (A, I), (B, II) ,(40)

the resulting Hamiltonian (37) is now expressed in terms of the A,B modes.
Let us now come back to the full Hamiltonian (30). After the V -limit, in general we

obtain an Hamiltonian density of the form

H̄0 =
∑

i=I,II

(
Hi

0 + δHi
0

)
+ δHmix .(41)

In order to select among the inequivalent representations, we have to impose an appro-
priate renormalization condition on the form of the Hamiltonian (41).

With respect to the simple case, where only one field was present, we have now two
distinct possibilities:

The first possibility is to impose the condition that the Hamiltonian (41) becomes
fully diagonal in two fermion fields, ψ1 and ψ2, with masses m1 and m2

H̄0 =
∑

j=1,2

ψ̄j (−iγ ·∇ + mj) ψj .(42)

The condition for the complete diagonalization of (41) is found to be [6]

θ → θ̄ ≡ 1
2

tan−1

[
2h

mμ − me

]
,(43)

m
A
→ m1 ≡ 1

2

(
me + mμ −

√
(mμ − me)2 + 4h2

)
,(44)

m
B
→ m2 ≡ 1

2

(
me + mμ +

√
(mμ − me)2 + 4h2

)
,(45)



8 M. BLASONE et al.

where we introduced the notation me = mI + fI , mμ = mII + fII . The vacuum state
associated with such a representation is denoted as

|0(θ̄,m1,m2)〉 ≡ |0〉1,2 ,(46)

Another possible representation is obtained by a partial diagonalization of (41), leaving
untouched δHmix. This will lead to the Hamiltonian density

H̄0 =
∑

σ=e,μ

ψ̄σ (−iγ ·∇ + mσ) ψσ + h (ψ̄eψμ + ψ̄μψe) .(47)

Such a representation is obtained by setting

θ → 0 ,(48)
mA → me ≡ mI + fI ,(49)

mB → mμ ≡ mII + fII .(50)

The vacuum in this representation is denoted as

|0(θ = 0,me,mμ)〉 ≡ |0〉eμ ,(51)

and will be called the flavor vacuum. We note that the mixing term in eq. (47) is
form-invariant under the transformation (35), provided θ = 0.

Being the representations |0〉1,2 and |0〉e,μ unitarily inequivalent to each other, it is
clear that one has to make a choice between them based on physical considerations. In
this respect, it seems more reasonable to adopt the representation built on the flavor
vacuum |0〉e,μ, as the one which better fits the situation present in the Standard Model,
where the flavor fields describe the physical particles, and do not have in general a
diagonal mass matrix.

The difference between the two above representations can be also seen via the gap
equations which are formally written as a set of 3 non-linear equations for fI , fII , h and
regulate the dynamical generation of both masses and mixing terms. This will be also
studied with the effective action approach.

Finally, we note that the transformation (35) is of the same form as the one studied
in ref. [13].

4. – Dynamical generation of flavor mixing - Effective action approach

To study the problem from a functional integral point of view, we start considering the
mechanism of dynamical mass generation as done in [10]. The N -flavors NJL Lagrangian
is written as

L = iψ̄γμ∂μψ + G
N2−1∑
α=0

[(
ψ̄

λα

2
ψ

)2

+
(

ψ̄
λα

2
iγ5ψ

)2
]

,(52)

where λα are the generators of the flavor U(N) group, with the normalization tr
(
λαλβ

)
=

2δαβ . The spinor ψ carries a flavor index.
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Using the Fierz identity for λα

N2−1∑
α=0

1
2
λα

abλ
α
cd = δabδcd,(53)

one can rewrite the Lagrangian (52) in the form

L = iψ̄γμ∂μψ + 2Gψ̄a
Lψb

Rψ̄b
Rψa

L.(54)

The Lagrangian (52) is invariant under transformations of the chiral group UL(N) ×
UR(N). We rewrite it as

L = iψ̄γμ∂μψ − ψ̄LMψR − ψ̄RM†ψL − 1
2G

tr
(
MM†) ,(55)

where M is an auxiliary boson field that has to respect the following constraint equations:

Mab = −2Gψ̄b
Rψa

L, M†
ab = −2Gψ̄b

Lψa
R.(56)

These are nothing but Euler-Lagrange equations for M . The reader can also recognize
that the M field is the Hubbard-Stratonovich composite (or effective) field which can
be constructively introduced directly on the level of functional integral via Hubbard-
Stratonovich transformation. It is interesting to note that, apart the kinetic term of M ,
this is the Lagrangian of the linear σ-model [10,14].

We write the generating functional Z[J ] as

Z[J ] = K

∫
DMDM†DψDψ̄ exp

{
i

∫
d4x [L(x) + F [J ]]

}
,(57)

where L is the Lagrangian density (55) and F is

F [J ] =
∑

i

Ji(x)φi(x) ,(58)

where φi are all the local fields in the theory, and Ji are the auxiliary currents. The
factor K, as usual, is determined so that Z[0] = 1. Taking into account the explicit form
of the Lagrangian we find that

Z[J ] = K

∫
DMDM† exp

{
i

∫
d4x

[
− 1

2G
tr(MM†) + F [J ]

]}
Zf (M,M†) ,(59)

where Zf is

Zf (M,M†) =
∫

DψDψ̄ exp
{

i

∫
d4x ψ̄ iD ψ

}
(60)

and iD is

iD = iγμ∂μ − M ⊗ (1 − γ5)
2

− M† ⊗ (1 + γ5)
2

.(61)
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To evaluate (60) we need to perform the Wick rotation and then solve the Gaussian
integral thanks to the formula, valid for the Grassman variables∫

Dψ̄Dψ exp
[∫

d4xd4y ψ̄(x)A(x, y)ψ(y)
]

= C DetA ,(62)

where C is a normalization factor. Thus, it follows that

Zf (M,M†) = C Det iD.(63)

We point out that here the determinant is in a functional sense. The action of the
effective theory is then

S(Mc,M
†
c ) = i log(Det iD) +

1
2G

∫
d4x tr

(
M†

c Mc

)
.(64)

Here Mc plays the role of a classical variable and is defined as

Mc =
δW

δJ
=

〈0|M |0〉
Z[J ]

,(65)

where W is the functional generator of the connected Green’s functions. Let us note, in
fact, that at tree level eq. (64) is the effective action (the generator of amputated Green’s
functions).

Let us now perform the mean field approximation, i.e. we neglect the fluctuations
around the minimum of the potential. Mathematically this means to impose the varia-
tional principle

δS

δMc
= 0.(66)

We search a solution of eq. (66) in the form [10]

Mc =
v√
N

1IN ,(67)

where 1IN is the N × N identity matrix.
To evaluate the first term in eq. (64), we use the identity

log DetA = Tr log A,(68)

where the “big trace” includes the functional trace and the “little trace” trA, that is the
traditional matrix trace. Therefore, in our case, we can write

log(Det iD) = Tr log iD = δ4(0)
∫

d4x tr log
(

γμpμ − v√
N

.

)
(69)

Here we used that, taking into account eq. (67)

〈p′|iD|p〉 = δ4 (p − p′)
(

γμpμ − v√
N

)
.(70)
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Using the Fourier representation of the Dirac delta, the effective potential is written as

V (v) =
2iN

(2π)4

∫
d4p log

(
1 − v2

Np2

)
+

1
2G

v2 .(71)

Deriving with respect to v and equaling to zero we arrive at the gap equation

mdyn =
4iG

(2π)4

∫
d4p

mdyn

p2 − m2
dyn + iε

.(72)

Here we put mdyn = − v√
N

and we added the poles shift term. This equation has
non-trivial solutions only if the coupling constant overcome a certain value. When the
coupling constant overcomes this limit value, we obtain a tachyonic bosonic bound state
and then the vacuum instability. In order to cure this instability the vacuum rearranges
itself and gives mass to fermions [15].

Let us now try to reformulate, with the effective action formalism, the dynamical gen-
eration of fermion mixing, introduced in the previous section, as done for the dynamical
generation of mass.

The general form of M is

M =
1√
2
[(σ + iη)1I2 + (σ + iπ) · τ ] ,(73)

where 1I2 is the 2 × 2 identity matrix, τ = (τ1, τ2, τ3) is a vector with components the
Pauli matrices and σ, η,σ,π are a scalar and pseudo-scalar flavor singlet and a scalar
and pseudo-scalar flavor triplet, respectively.

We search a solution of eq. (66) in a more general form than above

Mc =
1√
2

[
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

]
.(74)

Here we called

σc = v0 , σc = v = {v1, v2, v3} ,(75)

where σc and σc are the vacuum expectation values of σ and σ, respectively, defined
as in eq. (65). We assumed equal to zero the vacuum expectation values of the pseudo
scalar fields.

To evaluate the first term in eq. (64), we use the identity (68). Thus we can write

log(Det iD) = Tr log iD = δ4(0)
∫

d4p tr log (γμpμ − Mc) ,(76)

and, remembering the explicit form of Mc eq. (74)

log(Det iD) = δ4(0)
∫

d4p tr log
(

γμpμ − v0 + v · τ√
2

)
.(77)
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Note that here a tensor product is always understood and then, this equation, should be
of the form

log(Det iD) = δ4(0)
∫

d4p tr log
(

γμpμ ⊗ 1I2 −
v01I2 + v · τ√

2
⊗ 1I4

)
.(78)

Here 1I2 and 1I4, are the 2 × 2 and the 4 × 4 identity matrices. In the calculations
are involved only tensor products between identity matrices and then, to simplify the
notation, we drop out these matrices as done in eq. (77).

The 8 × 8 matrix of which we have to evaluate the tr log is

A8 =

⎡
⎣1I4

(
1 − v0

2+|v|2
2p2 − v0v3

p2

)
−1I4

(
v0(v1−iv2)

p2

)
−1I4

(
v0(v1+iv2)

p2

)
1I4
(
1 − v0

2+|v|2
2p2 + v0v3

p2

)
⎤
⎦ .(79)

Thus the effective potential is

V (v0, v1, v2, v3) =
v0

2 + |v|2

2G
(80)

+
i

8π4

∫
d4p log

⎛
⎜⎝4p4 − 4p2

(
v0

2 + |v|2
)

+
(
−v0

2 + |v|2
)2

4p4

⎞
⎟⎠ .

We note that this reduces to (71) when |v| = 0. Deriving respect to v0, v1, v2, v3 and
equaling the result to zero we arrive at the explicit form of the gap equations

v0

G
= − i

8π4

∫
d4p

[
−8p2v0 − 4v0

(
−v0

2 + |v|2
)]

[
4p4 − 4p2

(
v0

2 + |v|2
)

+
(
−v0

2 + |v|2
)2
] ,(81)

v
G

= − i

8π4

∫
d4p

[
4v
(
−v0

2 + |v|2
)
− 8p2v

]
[
4p4 − 4p2

(
v0

2 + |v|2
)

+
(
−v0

2 + |v|2
)2
] .(82)

In parallel with the treatment of the previous section we can consider two cases:

1. One can search a solution in the form

Mc =
1√
2

[
v0 + v3 0

0 v0 − v3

]
.(83)

Calling mA = 1√
2
(v0 +v3) and mB = 1√

2
(v0−v3) and substituting Mc in the Lagrangian

(52), we obtain

L =
∑

a=A,B

(
iψ̄aγμ∂μψa − maψ̄aψa

)
,(84)

that corresponds to the case of (37).
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2. More in general we can also search a solution in the form

Mc =
1√
2

[
v0 + v3 v1

v1 v0 − v3

]
.(85)

Putting fI = 1√
2
(v0 + v3), fII = 1√

2
(v0 − v3) and h = v1√

2
and substituting in the

Lagrangian (52) we obtain

L =
∑

a=I,II

(
iψ̄aγμ∂μψa − faψ̄aψa

)
− h
(
ψ̄IψII + ψ̄IIψI

)
,(86)

that corresponds to the case of (41). At this point we consider two possibilities:
• We can diagonalize completely the Lagrangian (86). To do this we have to diagonalize
the mass matrix (85). From the secular equation we obtain, calling the eigenvalues m1

and m2

m1 =
1
2

(
fI + fII −

√
(fII − fI)2 + 4h2

)
,(87)

m2 =
1
2

(
fI + fII +

√
(fII − fI)2 + 4h2

)
,(88)

that are eqs. (44)-(45) in the case in which mI and mII are zero. Let us now search the
eigenvectors of the matrix (85). The eigenvalue equation is

[
fI h
h fII

] [
xi

yi

]
= mi

[
xi

yi

]
, i = 1, 2.(89)

It is well known that Mc, being symmetric can be diagonalized by an orthogonal matrix
G, that has the eigenvectors as columns

G =
[
x1 x2

y1 y2

]
.(90)

The relation between Mc and the diagonal matrix M̃ is

M̃ = G−1McG .(91)

From eq. (89) we find that G takes the form

G =
[

x1 x2
m1−fI

h x1
m2−fI

h x2

]
.(92)

We have the freedom to choose x1 and x2. Our choice is to have diagonal elements equal
to one. We obtain

G =

⎡
⎣ 1 2h

h

1+
q

1+( 2h
fII−fI

)
2
i

(fII−fI)

− 2h
h

1+
q

1+( 2h
fII−fI

)
2
i

(fII−fI)
1

⎤
⎦ .(93)
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If we call ζ = 2h
h

1+
q

1+( 2h
fII−fI

)
2
i

(fII−fI)
and we remember that the matrix G is defined up

to a constant we reach the following form:

G =
1√

1 + ζ2

[
1 ζ
−ζ 1

]
.(94)

Let us note that the matrix G depends only on one parameter tan(2θ) ≡ 2h
fII−fI

. This
is the same parameter that appears in eq. (43). This result was now derived in an
independent way. Moreover this matrix belongs to SU(2)/U(1) and then has the form of
a generator of generalized coherent states [16]. The Lagrangian (52), in the mass basis,
is then written as

L =
∑

a=1,2

(
iψ̄aγα∂αψa − maψ̄aψa

)
.(95)

It is very important to note that this case is substantially different respect to the case
of eq. (84). Now there are three bosons in the vacuum, while in the previous case there
were only two bosons. This is the physical nature of the inequivalence between these two
situations.

A helpful relation can be found between θ and ζ

ζ = tan θ .(96)

This relation with eq. (91) leads to Pontecorvo mixing formula.
• We suppose that all the possible physical configuration can be obtained by Mc through
a similarity transformation like in eq. (91), with G of the form (94). In the case of ζ = 0,
putting fI = me and fII = mμ, we find, substituting in the Lagrangian (52)

L =
∑

a=e,μ

(
iψ̄aγα∂αψa − maψ̄aψa

)
− h
(
ψ̄μψe + ψ̄eψμ

)
.(97)

Then we recovered the situation of eq. (47).
Therefore thanks to the language of the effective action, in the classical, mean field

limit, we have recovered all the previous cases. Moreover we found an interesting con-
nection: every inequivalent representation (physical phase of the system) can be put in
connection with an SU(2) coherent states. The space of all generators of SU(2) coherent
states, as known [16], has the structure of a Kählerian manifold. In particular the case
of the flavor vacuum coincides with the minimum of the Kählerian potential

F = log (1 + |ζ|2) .(98)

5. – Conclusions

In this paper we have considered the problem of dynamical generation of flavor mixing
in the context of Nambu-Jona Lasinio model for the simplest case of two generations
of Dirac fields. We have first reviewed an operatorial approach to this problem already
presented in ref. [6] and based on the inequivalent representations in the spirit of an early
treatment given in ref. [5] for the case of one generation (dynamical mass generation).
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We found that the patterns of dynamical symmetry breaking and the related vacuum
structures are essentially different in the two cases when mixing is present or not at
physical level, although at operatorial level the respective Hamiltonians are connected
only by a rotation in the fields.

We have then considered the same problem in the functional integral formalism, by
studying one-loop effective action and obtaining gap equations which include also the
dynamical generation of mixing terms. The preliminary results here presented seem to
confirm what found in the operatorial formalism, although more study is necessary to
fully connect the two treatments. In this respect, appears very interesting the general
issue about the capability of functional formalism to take into account inequivalent rep-
resentations and possibly its formal extension in this sense.
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REFERENCES

[1] Blasone M. and Vitiello G., Ann. Phys., 244 (1995) 283.
[2] Blasone M., Henning P. A. and Vitiello G., Phys. Lett. B, 451 (1999) 140;

Blasone M., Jizba P. and Vitiello G., Phys. Lett. B, 517 (2001) 471; Blasone M.,

Capolupo A. and Vitiello G., Phys. Rev. D, 66 (2002) 025033.
[3] Mavromatos N. E. and Sarkar S., New J. Phys., 10 (2008) 073009;

Mavromatos N. E., Sarkar S. and Tarantino W., Phys. Rev. D, 80 (2009) 084046;
Phys. Rev. D, 84 (2011) 044050; Mod. Phys. Lett. A, 28 (2013) 1350045.

[4] Nambu N. and Jona-Lasinio G., Phys. Rev., 122 (1961) 246.
[5] Umezawa H., Takahashi Y. and Kamefuchi S., Ann. Phys., 26 (1964) 336.
[6] Blasone M., Jizba P., Lambiase G. and Mavromatos N. E., J. Phys., 538 (2014)

012003.
[7] Blasone M., Jizba P. and Vitiello G., Quantum Field Theory and its Macroscopic

Manifestations (World Scientific, London) 2011.
[8] Umezawa H., Matsumoto H. and Tachiki M., Thermo Field Dynamics and Condensed

States (North-Holland, Amsterdam) 1982.
[9] Bogoliubov N. N. and Shirkov D. V., Introduction to theory of Quantized Fields, (John

Wiley, New York) 1979.
[10] Miransky V. A., Dynamical Symmetry Breaking in Quantum Field Theories (World

Scientific, London) 1993.
[11] Yang C. N. and Feldman D., Phys. Rev., 79 (1950) 972.
[12] Blasone M. and Jizba P., Ann. Phys., 295 (2002) 230.
[13] Blasone M., Gargiulo M. V. and Vitiello G., J. Phys. Conf. Ser., 626 (2015) 012026.
[14] Gell Mann M. and Levy M., Nuovo Cimento, 16 (1960) 705.
[15] Barducci A., Casalbuoni R., De Curtis S., Dominici D. and Gatto R., Phys. Rev.

D, 38 (1988) 238.
[16] Perelomov A., Generalized Coherent States and their Applications (Springer-Verlag,

Berlin) 1986.


