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Nonlinear Gamow vectors in nonlocal optical propagation
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Summary. — Shock waves dominate in a wide variety of fields in physics deal-
ing with nonlinear phenomena, nevertheless the description of their evolution is not
resolved for the entire dynamics. Here we propose an analytical method based on
Gamow vectors, which belong to irreversible quantum mechanics. We theoretically
and experimentally show the appearance of these decaying states during shock evolu-
tion allowing to describe the whole wave propagation. These results open new ways
to the control of extreme nonlinear regimes such as supercontinuum generation or
in the analogies of fundamental physical theories.

1. – Introduction

Dispersive shock waves emerge in a wide variety of fields in physics as fluidodynamics,
astrophysics and Bose-Einstein condensation [1]. The reason why they are ubiquitous in
nature is that they are singular solutions of the hyperbolic partial differential equations, a
class of equations which describes a wide variety of wave-like physical phenomena ranging
from water waves to plasmas and optics. A singular solution is a function which develops a
discontinuity in its derivative as a consequence of an abrupt jump in some of the quantities
involved in the wave propagation [2]. The point at which such a singularity arises is
called shock point, and can be mathematically predicted together with its speed [3]. To
do this, techniques like the Whitham approach are often used, but these are usually
limited to integrable systems [4]. Hydrodynamic models support singular solutions and
allow the prediction of the position and velocity of the shock occurrence. Studies have
been reported on the variation of the position of the shock point as a function of the
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beam input power [3]. Unfortunately the hydrodynamic regime is only valid before the
shock point and does not allow a complete description of the phenomenon.

The theoretical method here proposed to solve the complete dynamics of shock waves
has been recently reported on [5], and its experimental proofs can be found in [6].

In optics the equation used to describe the nonlinear regime is the nonlinear
Schrödinger equation (NLS). Let us start with an optical beam with amplitude A and
wavelength λ propagating in a medium with refractive index n0, and linear loss length
Lloss. Its paraxial propagation equation reads as

(1) 2ik
∂A

∂Z
+

∂2A
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+ 2k2 Δn[|A|2](X)

n0
A = −i
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where Z is the propagation direction and X is the polarization direction. A is normalized
such that the intensity is I = |A|2 and PMKS =

∫
IdX is the power, k = 2πn0/λ is the

wavenumber. Δn is the nonlocal nonlinear perturbation to the refractive index defined as

(2) Δn[I](X) = n2

∫
G(X − X ′)I(X ′)dX ′.

where G(X) = exp(−|X|/Lnloc)/2Lnloc is the kernel function, normalized such that∫
GdX = 1.
Letting W0 be the beam waist and Zd the diffraction length, we write eq. (1) in terms

of the normalized variables x = X/W0 and z = Z/Zd with Zd = kW 2
0
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where α = Zd/Lloss and ψ = AW0/
√

PMKS , where 〈ψ|ψ〉 = 1 denotes the Hilbert space
scalar product. P is defined as PMKS/PREF , with PREF = λ2/4π2n0|n2|. n2 is the
nonlinear refractive coefficient and K(x) = W0G(xW0) is the nonlocality function.

Starting from eq. (3), if the perturbative refractive index is much larger than the
beam dimension, i.e., Lnloc � W0, the highly nonlocal approximation (HNA) holds
true. Hence, the convolution product K(x) ∗ |ψ(x)|2 can be written as a function κ(x)
and the NLS equation becomes a linear equation which has the same form of the linear
Schrödinger equation of quantum mechanics

(4) i∂zψ = Ĥψ, with Ĥ =
1
2
p̂2 + V (x),

being p̂ = −i∂x and V (x) = Pκ(x). Expanding the latter at the intensity maximum
value

(5) κ(x) � κ2
0 −

1
2
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2x
2,

with κ2
0 = 1/2σ and κ2

2 = 1/
√

πσ for the exponential nonlocality, we obtain

(6) Ĥ = Pκ2
0 + Ĥrho.
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Writing ψ = eiκ2
0Pzφ, eq. (4) becomes

(7) i∂zφ = Ĥrhoφ.

Ĥrho is the Hamiltonian of a reversed harmonic oscillator (RHO), which corresponds to
a system in proximity to a maximum in its potential energy V

(8) Ĥrho =
p̂2

2
− γ2x2

2
with γ2 = Pκ2

2,

where γ is the decay rate of the corresponding classical system. This system was first
introduced by Glauber [7], and then revised by Chruscinski and others [8-10] to formulate
the theory of irreversible quantum mechanics. Its eigenfunctions can be deduced as an
extension in the complex plane (x →

√
∓ix) of the ones of the harmonic oscillator

(9) f±n (x) = e±iπ/8

( √
±iγ

2nn!
√

π

)1/2

e∓i γ
2 x2

Hn(
√

±iγx),

where Hn(x) are the n-th order Hermite polynomials. Their eigenvalues are purely
imaginary numbers E±

n = ±iγ(n + 1/2).
It is worthwhile to notice that f±n are unnormalizable functions belonging to a rigged

Hilbert space (RHS) H×, an enlarged Hilbert space H which includes unnormalizable
functions. These are the so called Gamow vectors (Gvs), introduced by Gamow in 1928
to describe the exponential decays in particle physics [11]. For each n, two Gvs exist: for
z > 0, f−n decreases exponentially, while f+n increases. In fig. 1 we report |f−n |2 and their
phase derivative (tilt), ∂xarg(f−n ), for even n.
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Fig. 1. – (Color online) (a) Square modulus |f−n |2 of Gamow vectors for different n = 0, 2, 4, 6, 8;
(b) Tilt, ∂x arg(f−n ), for values of n as in (a). (See [5]).



4 M. C. BRAIDOTTI et al.

Fig. 2. – (a) Projection of the simulated solution (eq. (3)) on Gamow states for n = 0, 2, 4, 6
with α = 0.3 and γ = 8, continuous lines are from eq. (3), dots are from eq. (11); (b) the same
as in (a) with γ = 24; (c) numerical solution of eq. (3) with P = 102 and σ2 = 10. (See [5]).

Since Gvs form a basis in H× for normalizable wavepackets, φ can be written as

(10) φ(x) =
N∑

n=0

√
Γnf−n 〈f+n |ψ(x, 0)〉,

where ψ(x, 0) is the physical state at z = 0 and Γn = γ(2n + 1) are the quantized decay
rates of Gvs, which are one of the characteristic signatures of their presence.

2. – Numerical simulations

In order to validate our theoretical analysis, we show that projecting eq. (10) over the
state

√
Γnf−n one can compute the probability pn(z) of finding the system in a Gamow

state. The n-th order Gv probability pn(z) can be written as

(11) pn(z) = Γn|〈f+n |ψ(x, 0)〉|2e−Γnz.

for z > 0. The initial profile determines which Gv is excited. Hence, for a Gaussian
beam

(12) ψ(x, 0) =
e−x2/2

4
√

π
,

all the odd terms in eq. (11) vanish due to the x-parity.
It is worthwhile to say that the decays of Gvs are not due to the coupling of the

physical state with the environment (i.e., extrinsic), but belong to a time-reversible
Hamiltonian (intrinsic origin).

To exhibit the presence of Gvs in an optical beam evolving with eq. (3), we solve
the latter equation numerically for a Gaussian beam profile (see eq. (12)). At low power
we do not find any exponential decay, while, at high power, shock occurs and the inten-
sity during propagation clearly reveals exponential decays (figs. 2(a), (b)). Comparing
fig. 1(a) with fig. 2(c) we observe that the beam shape resembles the excitation of the
Gamow states: the ground state appears in the central plateau while higher-order states
cause the lateral peaks.

In order to provide quantitative evidence of f−n in the shock wave, we project the
numerical solution ψ(x, z) of eq. (3) over f+n and compute the n weights pn(z) in eq. (11).
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Fig. 3. – (a) Experimental apparatus to collect top-fluorescence and transmitted images of shock
waves excited focusing a CW laser beam at 532 nm wavelength in a solution of Rhodamine B and
water; (b) experimental intensity-profile section at different Z; (c) numerical intensity-profile
section at different Z; (d) experimental top-fluorescence image of the laser beam propagating in
RhB solution at P = 380 mW; (e) numerical solution in the condition of panel (d). (See [6]).

In fig. 2(a), (b) we report the exponential decays with quantized rates Γn = γ(2n + 1) of
pn(z). This behavior has been tested for different values of γ2 and initial conditions, and
confirms the theoretical predictions. We remark that the evidence of the quantization of
decay rates is the most direct signature of the presence of Gvs.

3. – Experimental results

A complete report on the experimental results can be found in [6]. The experimental
setup used is shown in fig. 3(a). A shock wave is excited, letting a laser beam at 532 nm
wavelength propagate in a solution 0.1 mM of Rhodamine B (RhB) and water. RhB
is a dye with an high nonlinear index of refraction |n2| = 2 × 10−12 m2/W. In order
to access both the intensity profiles along the propagation direction Z and the angular
spreading of the transmitted intensity from the exit face of the holder cell, we realized
an experimental setup into two different configurations: the propagating profiles was
visualized by collecting the top-fluorescence emission by a microscope placed above the
sample top surface, while the transverse section of the beam profile was monitored with
a Charged coupled device (CCD) camera.

Figures 3(d), (e) respectively show the top-fluorescence profiles along the propagation
direction and the numerical simulation of the beam propagating according to eq. (3). As
said before in the numerical analysis, at the high power when the shock is excited, the
beam exhibits the characteristic double-peaked profile (see figs. 3(b), (c)) and presents
fast and power-dependent decays along the propagation Z direction. At low power, the
beam propagation is not affected by strong divergence, but it is dominated by diffraction,
as is shown in the inset of fig. 3(d).

Figures 3(b), (c) report three experimental and numerical transverse sections of the
intensity profile at different Z (Z = 0.2, 0.6 and 0.9 mm).

To observe the occurrence of the characteristic quantized decay rates, we analyzed
a slice of the beam intensity profile along the propagation z-direction (see yellow
line in fig. 3(d)) for different beam input powers. These results are shown in fig. 4.
Figures 4(a), (b) show clearly the exponential decays. Quantization is observed in the
data analysis which unveils the quantized-spectrum scaling Γ2/Γ0 = 5 at all the powers
range explored. This gives an experimental evidence of the excitation of the ground state
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Fig. 4. – (a) Numerical intensity decay at different laser powers; (b) experimental decays obtained
by slicing along the propagation Z direction the top-view intensity distribution (see the yellow
line in fig. 3(e)); (c) enlargement of the experimental curve at P = 450 mW. The double
exponential decay exhibited unveil the existence of two Gamow states, the fundamental one
with n = 0 (slow decay) and the excited one with n = 2 (fast decay); (d) decay rates vs. power
for the fundamental state Γ0 (filled circles), and the excited state Γ2 (triangles). (See [6]).

(decay rate Γ0) and the second excited Gamow state (decay rate Γ2 = 5Γ0). As expected
from the theory there is no evidence of the presence of the first excited Gamow state
(n = 1), which has been predicted to be null due to the x-parity symmetry of the system.
In fig. 4(d), we show that the observed decay rates exhibit the expected square-root on
power behavior, highlighting the prevalence of the nonlinear nature of the system on
linear losses due to absorption or scattering.

4. – Conclusions

We proposed a method based on nonlinear Gamow vectors in order to describe shock
waves dynamics. We theoretically showed that these states are present in nonlinear waves
and proved numerically their occurrence in nonlinear nonlocal laser-beam propagation.
We reported on their main characteristic of having quantized decay rates and observed
these features in the experiments in which a laser beam propagates in a thermal liquid.
These decay rates depend on power, as expected from the intrinsic nonlinear nature of
the system. This study sheds light on the possibility of controlling of extreme nonlinear
regimes (supercontinuum generation) and opens ways to analogies with fundamental
physical theories.
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