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Abstract 

An innovative high efficiency Raman system (exc. wav. 1064 nm) for safe molecular 

characterisation of paint layers and other photosensitive materials has been developed and 

successfully tested. It was equipped with a novel optical probe, which has been designed and built 

in order to perform Raman scattering measurements on a relatively large spot at laser intensities 

lower than the typical ones of the commercial instruments. Original optical solutions were 

implemented in order to achieve such an improved efficiency. Furthermore, the instrument was also 

equipped with an active thermal control line allowing to prevent alterations of the material under 

study and to optimize the measurement cycles by means of suitable modulations of the laser power. 

Comparative tests using the novel analytical tool and an alternative setup based on a commercial 

Raman probe were carried out on a set of pure pigments and oil paint layers, which allowed 

assessing the significantly higher efficiency and reliability of the former with respect to the latter. 

Keywords: Raman spectroscopy, pigment characterization, temperature control, painting, 

archaeometry.  

Introduction

Along the last two decades, the application of Raman spectroscopy in archaeometry and

conservation of cultural heritage, as well as in other fields, has undergone significant technological 

and applicative advances [1]. Nowadays, this vibrational technique is becoming the most used 

approach for the molecular identification of pigments, binders, ceramics, and other, as well as for 

recognizing alteration materials and performing technological studies of a variety of artefacts, in 

combination with other techniques within multidisciplinary approaches (see for example [2]). 

Furthermore, Raman spectroscopy has also been exploited for characterising the effectiveness of 

conservation treatments, such as those based on laser ablation [3]. This widespread use has been 

mainly favoured by the significant technological advances of the solid state lasers and optical 

components, along with the miniaturisation of the detectors, associated electronics, fiber coupled 

spectrometers, and personal computers. Such technological trends have allowed significant size and 

cost reductions of the analytical instruments and the development of portable devices [4, 5] with 

spectral resolution and signal to noise ratio not far from those of the laboratory instruments. This 

explains the increased number of works in the recent years using homemade portable Raman setups 

[6-9] with special-shape probes [10] or remotely operating [11, 12]. Recently, mobile instruments 

Published in: Measurement, Volume 118, March 2018, Pages 372-378
Link to the printed version: https://www.sciencedirect.com/science/article/pii/S0263224117307650  



  

combining multiple spectroscopic techniques in the same system have been introduced [13-15] 

including for example also devices for planetary missions [16, 17].  

Raman spectroscopy is usually referred to as a non-destructive technique although such a safe 

condition can be achieved only through careful optimisation of the irradiation parameters, or more 

often by operating at relatively low intensities. However, when the measurement time needs to be 

reduced in order to make practicable consecutive measurements of paint layers, organic fibers, 

plastics, and other, the achievement of non-destructive measurement conditions can be rather 

challenging because of the high photosensitivity and low critical thresholds of these materials. The 

excitation wavelength of 1064 nm is often preferable because of the strong fluorescence of organic 

materials at lower wavelengths (ex. 785 nm or lower). Anyway, because of the high intensities 

usually needed, the mentioned materials can easily undergo photothermal/chemical damage, such as 

discoloration, redox reactions, and material removal, with unacceptable visible alterations of the 

artefact under analysis. Furthermore, the operative conditions can become very critical whenever 

highly absorbing endogenous and/or exogenous materials are irradiated. Such an injury risk also 

represents a severe obstacle to the repeatability and reliability of the measurements and then to the 

possibility to implement automated compositional mapping and line-scanning Raman imaging. 

In the present work, the development and comparative testing of an innovative portable Raman 

system (exc. wav. 1064 nm) is reported. The instrument was equipped with an optical setup 

allowing operating with a relatively large laser spot along with automated energy release to the 

target driven by an online temperature monitoring. The basic idea, working principle, and technical 

details of the latter were recently reported [18, 19]. Besides the improvement of the whole system, 

here, we focus on a set of specific technical solutions and on extensive comparison carried out on 

pigments and paint layers with an alternative setup using a commercial Raman probe. The results 

achieved show the significant advantages in terms of safety and efficiency the novel analytical 

system, in view of molecular mapping of paintings [20-22], polychrome stones, and other. 

Technology and methods

The novel Raman system (system A in the following) including excitation source, probe, thermal

control line, spectrometer, fibre coupling, and software was designed and built according to the 

following component concept design: laser source with analogic power control; reflective optics 

with a high numerical aperture for efficient collection of the scattered radiation; laser power 

feedback loop for preventing material alteration based on the continuous measurement of the 

temperature of the irradiated spot; precise focusing and visual monitoring using LED aiming beams 

and a USB endoscope camera; thermal stabilization of the IR spectrometer in order to reduce the 

fluctuation of the background; optimization of the optical coupling between the reflective collector 

and the spectrometer using a suitable fibre bundle; driver and applicative software allowing for full 

control of the operating conditions, data acquisition, management, and display. 

In Fig. 1, a detailed schematic setup of the novel probe including the described components is 

displayed. As shown, the DP Nd:YAG (1064 nm, 500 mW) laser was coupled to a hard clad silica 

(HCS) optical fiber (OF), 200/230 µm core/clad; the fiber output was imaged onto the sample 

(2.25× magnification) by means of an aspheric lens, L1 (f=18.75 mm). A 10 nm wide bandpass 



  

filter, BP, centered at 1064 nm was placed after the lens L1 in order to cut-off the Raman scattering 

contribution of the fiber. The optical collector was devised using a pair of off-axis, 90°, parabolic 

mirrors, ½ inch diameter. The primary one, M1, which was drilled in order to let the laser beam pass 

through, had a focal length of 15 mm (NA: 0.41) while that of the secondary one, M2, was 25.4 mm. 

The latter was selected in order to better match the numerical aperture of the fiber. The optimization 

of the coupling to the spectrometer was achieved through comparative tests using different fibers 

and bundles. The best results were provided by a fibre bundle with seven fibers (∅ 105/125 µm 

core/clad, NA = 0.22), packed circularly at the input tip (collector side) and linearly at the output 

one (spectrometer side), which was aligned along the direction of entrance slit. The notch filter (N), 

centred @ 1064 nm, 44 nm-wide blocking window (OD > 6) for rejecting the elastic scattering 

component, was placed between the two mirrors. The IR spectrometer included a monochromator 

and a 512-pixel deep-cooled (-55°C) InGaAs array detector (BaySpec Inc., CA, USA), allowing to 

cover the spectral range between 165-1825 cm
-1

 with a resolution of 8 cm
-1

. As anticipated above,

the spectrometer was thermally stabilized using Peltier cells, suitable casing, fan, and heat sink 

components. 

The thermopile sensor (TP) was calibrated according to a corrected blackbody emission formula 

and the direct measurement of the emissivity of the target in order to provide the temperature 

evolution T(t) at the irradiated area, which was imaged on the sensor by means of the ZnSe lens, L2

(see [18] for further details). T(t) was used as input observable of the power control, P(t), with 

Proportional-Integral (PI) feedback: 
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where ∆T(t) = Tset - T(t), B, C and τ are adjustable parameters, Tset is the expected temperature set 

by the operator, while Pmin was set at 20 mW (arbitrary value selected in order to avoid the switch-

off of the laser when deep power modulations were induced by rapid temperature rises).  

The suitable selection of the B, C and τ parameters allowed optimizing the laser energy 

release to the target in order to avoid undesired overheating and alteration of the sample under 

analysis. In some details τ = 0.7 s guaranteed a gradual power increase during the onset phase, 

which was needed in order to avoid too high thermal gradients within the response time of the 

thermopile, TP (1.3 s). B can assume values ranging between 2.8 and 28 mW°C
-1/5

, while C ranges

between 8.4⋅10
-3

 and 42⋅10
-3

 mW°C
-1/5

s
-1

.

Three light beams (less than 1 mm diameter) were projected onto the sample surface by three 

LEDs (red, blue and green: R, G, B in Fig. 1), coupled to steel hollow needles 25 mm length, in 

such a way they overlapped at the focal spot of the system. These aiming beams along with an USB 

endoscope camera (E in Fig. 1) allowed controlling easily the correct positioning of the sample 

before the spectrum collection. 

The performances of the Raman system A, just described, were compared with those of an 

alternative setup (system B) built using the same laser excitation source and spectrometer as those 

of the system A and the commercial probe schematized in Fig. 2. In this second case, the scattered 



light was collected and collimated by the same lens, L2 (NA= 0.4), used for focusing the laser beam 

(focal spot diameter of 105 µm). It was then extracted from the incidence optical axis by means of a 

dichroic mirror (DM), bent using a flat mirror (M), filtered (N), coupled to the optical fibre (200 µm 

core diameter), and eventually sent to the spectrometer. 

The comparison between the two systems was carried out by considering the following 

exposure-normalised detection efficiency parameter: 

ℰ = ()* (+�,� ����� = ()-�.� = /0123�45/078 9,															�2�
where IR is the peak intensity of the Raman band (after baseline subtraction) selected for 

comparison, IL the laser intensity, tL the irradiation time, and Ftot the total fluence of radiant 

exposure at the focal laser spot. Alternatively, the detection performance can be compared by 

considering the counts/sec at fixed laser intensity. 

2.1. Characterization of system A 

System A was preliminarily characterized in terms of maximum laser power release to the target, 

spot size and distribution. Afterwards, the correct confocal alignment of the excitation beam and 

signal beam, as defined by the collection optics was carried out. The two beams define a working 

range (volume) where the surface of the sample should be located in order to allow effective Raman 

detection. In addition, the correct alignment of the thermal detection group (TP and L2) was also 

geometrically quantified. 

The laser power distribution within the focal spot was measured by means of a beam analyzer 

(LBA 500PC, Spiricon Inc., UT, USA): it resulted to be 450 µm in diameter and exhibited excellent 

top-hat distribution, as displayed in Fig. 3a. The maximum power release to the target was 360 mW 

and the corresponding maximum intensity was 226 W/cm
2
.

The beam analyzer was also used in order to correctly align and focus the collection optical 

group. To this goal, the spot of the incident laser beam was overlapped at the focus with that of the 

beam achieved by illuminating the fiber bundle from the spectrometer side. As shown in Figs. 3, the 

two spots, obtained using a 7×105/125 µm (Fig 3b) and a 7×200/230 µm (Fig 3c) fiber bundles, 

respectively, were in satisfactory matching with the laser spot (white circle). In particular, the spot 

of the smaller bundle exhibited a better size matching with that of the laser. 

The assessment of the alignment of the thermal sensor was achieved by scanning a thin metallic 

wire across the laser spot area, in two directions (X, Y) perpendicular to the axis of the laser beam. 

The wire was heated at a constant temperature with electric current and for each measuring point of 

the scans, two temperatures were acquired: with the laser switched OFF and ON, respectively. 

When the wire was located in the laser spot area, a temperature rise was detected, due to the laser 

heating. As shown in Fig. 4, the X and Y scan with the laser OFF defined the cross sectional area of 

the focal region from where the TP sensor was able to receive the thermal signal (blue and green 

lines, respectively). Similar scans with the laser ON (yellow and red lines, respectively) and the 

corresponding heating was measured. Figure 4 shows that a very good alignment was achieved 

since a coincident peak position was detected, and that the thermal line detection area was a bit 

larger than the laser spot area (about 1.5-2 time larger). Therefore, it should be considered that the 

temperature measured could be, in some extent, underestimated, especially in the cases of short 



  

time exposures and samples presenting low thermal diffusivity. 

The larger width of the peaks in the Y direction is due to the geometrical factor 1/cos(θ), being θ 

the angle between the thermal line optical axis and the laser beam axes (40°). 

In order to characterize the system in terms of depth of focus, cinnabar powder was used as test 

sample, which was placed at different  distances around the optimum position along the laser beam 

axis (assumed to be Z=0). At each position a spectrum was collected, the temperature after 7 s from 

the beginning of the laser radiation was measured using the thermal sensor, and a picture of the 

scene as seen by the endoscope was taken. The results of this test are summarized in the plot of Fig. 

5 reporting the intensity of the band of cinnabar at 252 cm
-1

 (solid blue line), and its difference with

respect to the intensity of the band at 309 cm
-1

 (dashed green line), and the mentioned temperature

(red line). Position shifts of ±0.5 mm around Z=0 returned Raman signals within 90% of the 

maximum. The coincidence of the maximum temperature at Z=0 confirmed the good alignment of 

the thermal line. Finally, the inset pictures of Fig. 5 taken at the various position show how the best 

overlap the RGB aiming beams (better shown on white target at the top right corner of the plot) also 

occurs at Z=0 thus confirming the effectiveness such a focusing approach for polychrome samples 

based on multicolor LED beams.  

Characterization of system B 

The system B was characterized in a similar way as the system A in terms of spot size and 

distribution and laser intensity at the target. The maximum value of the latter resulted to be 4.16 

kW/cm2, as calculated considering the measured power of 360 mW and laser spot diameter of 105 

µm. The latter corresponded to the fiber core diameter and was determined by means of the 

mentioned beam analyzed (Fig 3d). It must be observed that in the present case the intensity 

distribution was rather peaked at the center and hence decidedly less homogeneous than that of the 

system A (Fig. 3a). 

Extensive measurement tests have been carried out on a set of mercury, iron, copper, lead and 

cadmium based pigment samples using both the Raman systems described above. These were 

carried out after determining the discoloration thresholds of the various pigments through gradual 

exposure increases and microscope examinations, in order to define safe operative irradiation 

ranges. The comparison pointed out the detection efficiency of the system A was significantly 

higher than that of the system B. Thus for example, as shown in Fig. 6, reporting the spectra of 

cinnabar (HgS), a similar maximum of the most intense band at 252 cm
−1

 was achieved with the

system A using much lower intensity and radiant exposure than those needed for the system B (100 

J/cm
2
 against 1.2 kJ/cm

2
). The corresponding efficiency parameters (Eq. 2) were: εA= 186

counts⋅cm
2
/J, εB=12 counts⋅cm

2
/J. For both spectra the acquisition time was tLA=tLB=3 s.

The signal improvement achieved has to be attributed to the following main features of the novel 

system (A): 1) larger laser spot (450 against 105 µm) with a top-hat energy distribution produced by 

the single lens (L1 in Fig. 1) imaging configuration; 2) high numerical aperture optical collection; 

improved coupling to the spectrometer using the fiber bundle FB (Fig. 1) with the mentioned 



  

asymmetric packing, which allowed collecting more scattered light from the irradiated spot and 

better exploit the active area of the sensor array of the spectrometer. 

In all the cases, the acquisition time can be reduced by increasing the excitation intensity, 

according to the linear dependence of the Raman scattering on the latter within a given intensity 

range. However, the irradiation parameters should be kept well below the alteration threshold of the 

material under study. 

As mentioned above, the present configuration of the system A allowed a maximum intensity 

release to the target of about 226 W/cm2. The permanent darkening of cinnabar was observed after 

about 3 s at 100 W/cm2, which corresponded to a peak temperature of 180°C, as measured through 

the thermal monitor line. Conversely, alteration of cinnabar using the system B was observed after a 

similar irradiation time at 600 W/cm2. Such a significant difference between the two alteration 

thresholds has to be attributed to the different spot diameters and beam distributions of the two 

systems. 

In order to safely expose the sample, the system A allowed to activate the PI feedback control 

loop according to Eq. (1). It was then possible to start the spectrum detection either soon after the 

laser was switched ON or, alternatively, when the surface temperature of the target approached the 

Tset value within a certain ∆T. Thus for example in Fig. 7a, several spectra of cinnabar are shown, 

which were collected using 3 s integration time, by starting the acquisition only when the target 

temperature was close to Tset (∆T=T-Tset=–2°C). The respective temperature temporal profiles are 

displayed in Fig. 7b, where the last 3 s, during which the spectra have been collected, are 

highlighted with a double colour stretch of the curves. 

These results provide evidence, the system A offers the possibility to significantly reduce the 

acquisition time and prevent undesired alterations of the sample. In particular, Fig. 7a shows that 

non-destructive spectral analysis of cinnabar was carried out up to a surface temperature set around 

150 °C, which corresponds to the maximal practicable acquisition speed on this pigment (i.e. 

detection time down to a fraction of second allow achieving up to several thousand counts). 

Similar tests were carried out on azurite (Fig. 8), Cu3(CO3)2(OH)2, which exhibited a permanent 

darkening at a laser intensity of about 120 W/cm
2
, slightly higher than that of cinnabar. Also in this

case the efficiency (which was in general lower than for cinnabar) of the system A was significantly 

higher than that of the system B. This was calculated in different irradiation conditions and showed 

a pronounced dependence on the radiant exposure: εA=0.22-1.28 for radiant exposures between 1-6 

kJ/cm
2
 and the maximum efficiency was achieved at 2 kJ/cm

2
. Such a behaviour of εA, which was

observed also for cinnabar, could likely be related to the possible reversible variation of the optical 

parameters of the pigment under irradiation at increasing laser intensities and total radiant exposure. 

In view of future substantial systematic insights on this feature, where both the dependences on total 

fluence and intensity must be investigated, let also observe that the intensities of the main band of 

cinnabar at 252 cm-1 exhibited a different behaviour with respect to that at 345 cm-1. As shown in 

Fig. 9, both of them showed saturating increase with the radiant exposure but the respective 

efficiency rises and maximal values were very different (above 200 and 80 counts cm2/J, 

respectively).  

Spectral analyses carried out on hematite pure pigment and red ochre linseed oil paint layer on 

gypsum and rabbit glue preparation of a wooden panel are reported in Fig. 10. As shown, 

intermediate efficiencies between those of cinnabar and azurite were found and the system A 



confirmed its superior performance. The best exposure-normalized efficiency (εA= 2.32 

counts⋅cm2/J, as calculated by considering the band at about 290 cm-1) was found at 350 J/cm2 

(orange spectrum), whereas a saturation effect was observed at about 1 kJ/cm2. Of course, there is 

not a reciprocity relationship between efficiency and exposure because of the combined dependence 

on the laser intensity (compare yellow, 30 sec at 35 W/cm2 and violet, 10 sec at 105 W/cm2: same 

total exposure, different efficiencies). The main bands of red ochre and underlying gypsum 

preparation were clearly recognizable in the spectrum at 350 J/cm
2
, which was collected in 10 s

using a laser intensity of about 35 W/cm
2
. The observed intensities of the Raman bands suggest that

a slightly higher intensity and shorter acquisition time (ex. 5 s) could be used in scanning operative 

conditions, where a suitable trade-off between full prevention of any material alteration and 

measurement speed must be determined. 

Further confirmations of the higher efficiency and reliability offered by the system A were 

achieved through additional characterization tests carried out on minium (Pb3O4, red) and cadmium 

yellow (CdS) in linseed oil. The spectra collected using the present two Raman systems at the same 

radiant exposure are displayed in Fig. 11. As shown, similar band intensities were achieve with very 

different radiant exposures, being those of the system A between 18-19 times lower than those of 

the system B. 

4. Conclusions

An innovative Raman system implementing a novel probe and equipped with a thermal control 

line for investigating the temperature dependence and preventing undesired alterations of the 

material under analysis has been developed. The comparison of its performances with those of an 

alternative system including a commercial Raman probe evidenced the significant advantages of the 

novel instrument. This was also equipped with an endoscope camera and three aiming LED beams 

for easy, precise, and repeatable focusing of the laser and collecting optical group. 

The tests were carried out on pure pigments and paint layers and the comparison of the 

instrumental performances was achieved using an exposure-normalised efficiency parameter. This 

allowed demonstrating the significant signal improvement provided by the novel system, which can 

operate at intensities, radiant exposures and material temperatures much lower than the usual ones 

or it can significantly reduce the spectrum acquisition time. Such features are very promising in 

order to develop an efficient Raman scanner able to provide automated molecular mapping of 

valuable paintings and, more in general, of polychrome surfaces, without relevant risks of material 

alterations.  

Further technical improvements, comparisons of the performances, extensive application tests on 

further paint layers, and the determination of the respective optimized operative conditions will be 

carried out in the next future. Furthermore, the Raman system described in this work will assembled 

on a five-axis Raman scanner, which is currently under construction. 
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Figure captions 

Fig. 1  Schematic set up of the novel probe implemented in the Raman system A. L1-2: lenses. M1-2: 

90° off-axis parabolic mirrors. BP and N: bandpass and notch filter, respectively. TP: 

thermopile. R, G, B: red green and blue LEDs, respectively. E: endoscope camera. 

Fig. 2  Schematic setup of the commercial probe used in the Raman system B. L1-3: lenses. DM and 

M: dichroic mirror and flat mirror, respectively. BP and N: band pass and notch filter, 

respectively. 

Fig. 3  Beam profiles of the focal laser spots of the system A (a) and B (d), respectively, along with 

those of the illuminated entrance of the 7×105/125 µm fiber bundle (b), and 7×200/230 µm 
fiber bundle (c), respectively. 

Fig. 4 Temperature spatial profiles as detected by the thermopile sensor during X and Y orthogonal 

scans of a hot wire in the focal plane with laser OFF and ON, respectively. 

Fig. 5  Assessment of the depth of focus of the system A by plotting the spatial dependence of the 
relative height of the two main Raman bands of cinnabar powder, of their difference, and of 

the corresponding temperature profile, as measured by the thermal sensor. Inset pictures 

show the position of the spots produced at the target surface by the RGB LED aiming 

beams. 

Fig. 6  Raman spectra of cinnabar as collected by means of the system A (red line) and the system B 

(blue line), respectively, using very different irradiation parameters. 

Fig. 7  Raman spectra of cinnabar (a) achieved at almost constant temperatures with the PI 

feedback control loop activated and corresponding T(t) profiles (b) for several values of Tset. 

The spectra (a) were achieved during the last 3 s of each profile temperature, with the 

exposure values reported in legend. The drastic increase of the continuum observed at 180 

°C (a) highlights the occurrence of the permanent alteration of the sample. 

Fig. 8  Spectra of azurite provided by the systems A and B at different radiant exposure (60 s 

integration time). The legend also report the respective efficiencies as evaluated for the peak 
at 1100 cm-1 are reported. 

Fig. 9  Detection efficiency of the system A for the cinnabar bands at 252 and 345 cm-1 vs radiant 

exposure. The black square at 280 J/cm
2
 indicate the saturation of the counts of the band at

252 cm-1 saturated. 

Fig. 10 Spectra of hematite pure pigment (two dotted spectra at the bottom) and of red ochre paint 

layer (three solid spectra), as measured using the systems A and B, respectively, and 

different irradiation parameters. The detection efficiency, ε, refers to the band at 290 cm-1. 

Fig. 11 Raman spectra at different radiant exposures of minium (a) and cadmium yellow (b) oil 
paint, as measured using the system A and B, respectively, showing the higher efficiency of 

the former. 



Highlights 

1) A very efficient and safe portable Raman system was developed.

2) High efficiency relies on a set of optical solutions which improve the signal.

3) Side effects are prevented by power control driven by active thermal monitoring.

4) The problem of rapid Raman characterisation of photosensitive paint layers was solved.



Graphical Abstract



Fig. 1 Schematic set up of the novel probe implemented in the Ra

http://ees.elsevier.com/meas/download.aspx?id=482967&guid=422c20b7-eb51-48fc-a12e-e82276702945&scheme=1


Fig. 2 Schematic setup of the commercia

http://ees.elsevier.com/meas/download.aspx?id=482968&guid=bec6baf8-d9e6-4f86-8f61-8df77826dfc6&scheme=1


Fig. 3 Beam profiles of the focal laser spots of the ...

http://ees.elsevier.com/meas/download.aspx?id=482945&guid=ab14e8bb-ebcf-4ece-a4e1-55501f31e157&scheme=1


Fig. 4 Temperature spatial profiles as detected ...

http://ees.elsevier.com/meas/download.aspx?id=482946&guid=ba08f8f5-e056-4eca-beb6-098a3e07f2ed&scheme=1


Fig. 5 Assessment of the depth of focus of the system A ...

http://ees.elsevier.com/meas/download.aspx?id=482947&guid=b948b4ea-bf6d-4dab-9d86-a27cbbc68b18&scheme=1


Fig. 6 Raman spectra of cinnabar as collected by means of ...

http://ees.elsevier.com/meas/download.aspx?id=482948&guid=f596d3b3-ef93-40a5-ba31-ecab46eebee8&scheme=1


Fig. 7a Raman spectra of cinnabar (a) achieved at almost ...

http://ees.elsevier.com/meas/download.aspx?id=482949&guid=84a7b428-e889-4d73-965d-b060c0ec7323&scheme=1


Fig. 7b ... temperatures with the PI feedback control loop ... 

http://ees.elsevier.com/meas/download.aspx?id=482950&guid=0c2adb1a-ed82-40eb-9caa-6e3f4737b6a4&scheme=1


Fig. 8 Spectra of azurite provided by the systems A and B ...

http://ees.elsevier.com/meas/download.aspx?id=482951&guid=fa040907-ace5-4cc9-9cfb-6b88c0e3b1d8&scheme=1


Fig. 9 Detection efficiency of the system A for the cinnabar ...

http://ees.elsevier.com/meas/download.aspx?id=482952&guid=3e0b6d0d-1a12-4241-bff5-b527be29c513&scheme=1


Fig. 10 Spectra of hematite pure pigment ...

http://ees.elsevier.com/meas/download.aspx?id=482953&guid=26ced295-b6ed-4225-ab7a-11e1ce7a85cb&scheme=1


Fig. 11a Raman spectra at different radiant exposures of minium 

http://ees.elsevier.com/meas/download.aspx?id=482954&guid=0a680737-09f7-4cd7-9ab0-1992f473b664&scheme=1


Fig. 11b ... and cadmium yellow (b) oil paint ...

http://ees.elsevier.com/meas/download.aspx?id=482955&guid=328f2d84-a1fe-4dff-b78d-efc786cfdc8d&scheme=1



