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Summary. — Differential cross sections for the production of at least four jets have
been measured in proton-proton collisions at

√
s = 8 TeV at the Large Hadron Col-

lider using the ATLAS detector. Events are selected if the four anti-kt R = 0.4 jets
with the largest transverse momentum (pT) within the rapidity range |y| < 2.8 are
well separated (ΔRij > 0.65), all have pT > 64 GeV, and include at least one jet with
pT > 100 GeV. The dataset corresponds to an integrated luminosity of 20.3 fb−1.
The cross sections, corrected for detector effects, are compared to leading-order
and next-to-leading-order calculations as a function of the jet momenta, invariant
masses, minimum and maximum opening angles and other kinematic variables.

1. – Introduction

The production of particle jets at hadron colliders such as the Large Hadron Collider
(LHC) [1] provides a fertile testing ground for the theory describing strong interactions,
Quantum Chromodynamics (QCD). In QCD, jet production is interpreted as the frag-
mentation of quarks and gluons produced in the scattering process followed by their
subsequent hadronisation. At high transverse momenta (pT) the scattering of partons
can be calculated using perturbative QCD (pQCD) and experimental jet measurements
are directly related to the scattering of quarks and gluons. The large cross sections
for such processes allow for differential measurements in a wide kinematic range and
stringent testing of the underlying theory.

The analysis presented in this contribution [2] studies events where at least four jets
are produced in a hard-scatter process using data collected by the ATLAS experiment [3].
These events are of particular interest as the corresponding Feynman diagrams require
several vertices even at leading-order (LO) in the strong coupling constant αS. Differen-
tial cross sections for these events were studied as a function of a variety of kinematic
and topological variables which include momenta, masses and angles. The variety of
kinematic regimes and topological distributions allow to test the validity of QCD cal-
culations, including the parton shower approximation and the necessity of higher-order
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Fig. 1. – Schematic of the kinematic regions in which the four different jet triggers are used,
including the total luminosity that each of them recorded. The term 4j45 (4j65) refers to a
trigger requiring at least four jets with pT > 45 GeV (65 GeV), where the pT is measured at the
EF level of the triggering system. The term j280 (j360) refers to a trigger requiring at least one
jet with pT > 280 GeV (360 GeV) at the EF level. The horizontal and vertical axes correspond

to p
(1)
T and p

(4)
T respectively, both calculated at the offline level (i.e., including the full object

calibration).

matrix element (ME) in Monte Carlo (MC) generators. Additionally, four-jet events rep-
resent a background to many other processes at hadron colliders. Hence, the predictive
power of the QCD calculations, in particular their ability to reproduce the shapes of the
distributions studied in this analysis, is of general interest.

The data sample used was taken during the period from March to December 2012
with the LHC operating at a pp centre-of-mass energy of

√
s = 8TeV. The application

of data-quality requirements results in an integrated luminosity of 20.3 fb−1.

2. – Analysis strategy

2.1. Event reconstruction and selection. – This measurement uses jets reconstructed
with the anti-kt algorithm with four-momentum recombination as implemented in the
FastJet package. The radius parameter is R = 0.4. The jets were calibrated using in situ
methods.

Cross sections are calculated for events with at least four jets within the rapidity
range |y| < 2.8. Out of those four jets, the leading one must have pT > 100GeV,
while the next three must have pT > 64GeV. In addition, these four jets must be
well separated from one another by ΔRij > 0.65, where ΔRij = mini,j∈[1,4]

i�=j

(ΔRij), and

ΔRij = (|yi −yj |2 + |φi −φj |2)1/2. This set of criteria is also referred to as the “inclusive
analysis cuts”, to differentiate them from the cases where additional requirements are
made, for example on the invariant mass of the four leading jets.

The inclusive analysis cuts are mainly motivated by the triggers used to select events.
Two of the triggers select events with at least four jets, while the remaining two select
events with at least one jet at a higher pT threshold. Events are split into the four
non-overlapping kinematic regions shown in fig. 1, requiring at least four well-separated
jets with varying pT thresholds in order to apply the corresponding trigger. This ensures
trigger efficiencies greater than 99% for any event passing the inclusive analysis cuts.
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Table I. – Definitions of the various kinematic variables measured. In all cases, only the four
jets with the largest pT are considered.

Name Definition Comment

p
(i)
T Transverse momentum of the i-th jet Sorted descending in pT

HT

4
P

i=1

p
(i)
T Scalar sum of the pT of the four

jets

m4j

 

„

4
P

i=1

Ei

«2

−
„

4
P

i=1

pi

«2
!1/2

Invariant mass of the four jets

mmin
2j /m4j mini,j∈[1,4]

i�=j

`

(Ei + Ej)
2 − (pi + pj)

2´1/2
/ m4j Minimum invariant mass of two

jets relative to invariant mass of
four jets

Δφmin
2j mini,j∈[1,4]

i�=j

(|φi − φj |) Minimum azimuthal separation
of two jets

Δymin
2j mini,j∈[1,4]

i�=j

(|yi − yj |) Minimum rapidity separation of
two jets

Δφmin
3j mini,j,k∈[1,4]

i�=j �=k

(|φi − φj | + |φj − φk|) Minimum azimuthal separation
between any three jets

Δymin
3j mini,j,k∈[1,4]

i�=j �=k

(|yi − yj | + |yj − yk|) Minimum rapidity separation
between any three jets

Δymax
2j Δymax

ij = maxi,j∈[1,4] (|yi − yj |) Maximum rapidity difference
between two jets

Σpcentral
T |pc

T| + |pd
T| If Δymax

2j is defined by jets a and
b, this is the scalar sum of the
pT of the other two jets, c and d
(“central” jets)

2.2. Cross-section definition. – Cross sections are measured differentially as a function
of the kinematic variables defined in table I; the list includes momentum variables, mass
variables and angular variables. In all cases, the only jets used are the four leading ones
in pT. The observables were selected for their sensitivity to differences between different
Monte Carlo models of QCD processes and their ability to describe the dynamics of
the events. Different phase-space regions are probed by binning the variables in regions
defined by a lower bound on p

(1)
T m4j or Δymin

3j .
Each of the cross-section distributions were individually unfolded using the Bayesian

Iterative method [4], with two iterations. This method corrects for migrations between
bins, background events and detector inefficiencies. The unfolding matrix was built using
Pythia, by matching events at reconstructed and particle level. The matching was per-
formed at an event level, without applying any jet-by-jet spatial matching. The binning
of the distributions was determined in order to achieve a bin-by-bin purity between 70
and 90% and a statistical uncertainty in data below 10%.

2.3. Theoretical predictions. – Monte Carlo samples are used to estimate experimen-
tal systematic uncertainties, deconvolve detector effects, and provide predictions to be
compared with the data. The full list of generators is shown in table II.

The samples used in the experimental studies comprise two LO 2 → 2 genera-
tors, Pythia 8.160 and Herwig++ 2.5.2, and the LO multi-leg generator Madgraph5 v1.5.12.
LO generators are still widely used in searches for new physics, which motivates the
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Table II. – The generators used for comparison against the data are listed, together with the
parton distribution functions (PDFs), PS algorithms and underlying event (UE). The HEJ sample
is based on an approximation to all orders in αS.

Name Hard scattering + PS/UE LO/NLO PDF

Pythia 8 Pythia 8 + Pythia 8 LO (2 → 2) CT10

Herwig++ Herwig++ + Herwig++ LO (2 → 2) CTEQ6L1

MadGraph Madgraph + Pythia 6 LO (2 → 4) CTEQ6L1

HEJ HEJ CT10

BlackHat BlackHat/Sherpa NLO (2 → 4) CT10

NJet NJet/Sherpa NLO (2 → 4) CT10

comparison of their predictions to the data. In addition, the results of the measurement
are compared to two NLO predictions calculated using BlackHat/Sherpa and NJet/Sherpa,
which are fixed-order calculations with no PS and no hadronisation. Lastly, the all order
prediction HEJ was also compared to the measured results. The LO samples and HEJ were
rescaled to facilitate the comparison with the data; the factors vary between 0.6 and 1.4.
Not all generators describe the shape of p

(1)
T correctly, so these scale factors should not

be seen as a measure of the level of agreement between MC simulation and data.

2.4. Uncertainties. – The experimental uncertainties taken into account are the Jet
Energy Scale (JES), Jet Energy Resolution (JER), Jet Angular Resolution (JAR) and
the luminosity uncertainty. The dominating one is the JES, with a typical size between
4 and 15%.

In the unfolding procedure, the main uncertainty component comes from the different
Monte Carlo descriptions of the particle- and reco-level association efficiency. It is mostly
subdominant, with values of 2–10%.

The theoretical uncertainties (scale and PDF) were calculated for NJet and HEJ

(although only NJet’s are shown in the result plots) by varying independently the renor-
malisation and factorisation scales by factors of

√
2, 2, 1/

√
2 and 1/2 around the central

value of HT/2. The total uncertainty is the result of taking the envelope of all the
variations. The uncertainty is found to be large, with values of +50%

−30%.

3. – Analysis results

This analysis studies a long list of variables, shown in table I. Due to time and space
constrains this contribution only shows four examples. The full extent of the analysis
can be found in the original publication [2].

Momentum variables. The first and fourth leading jet pT are presented in figs. 2 and 3.
Part of the importance of these variables lies in their wide use in analyses, alone or as
inputs to more complex observables. All the LO generators show a slope with respect to
the data in the leading jet pT, Madgraph being the only to present a positive slope in p

(1)
T .

Both Pythia and Madgraph describe p
(4)
T well, whereas HEJ and Herwig++ overestimate the

number of events with high values. NJet/Sherpa shows a similar trend at high p
(4)
T , but

the discrepancy is mostly covered by the theoretical uncertainties. The description could
perhaps be improved by matching the calculations to parton showers.
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Fig. 2. – The four-jet differential cross section as a function of leading jet pT(p
(1)
T ), compared to

different theoretical predictions: Pythia, Herwig++ and Madgraph (left), and HEJ, NJet/Sherpa
and BlackHat/Sherpa (right), from ref. [2]. For better comparison, the predictions are multiplied
by the factors indicated in the legend. In each figure, the top panel shows the full spectra and the
bottom panel the ratios of the different predictions to the data. The solid band represents
the total experimental systematic uncertainty centred at one. The patterned band represents
the NLO scale and PDF uncertainties calculated from NJet/Sherpa centred at the nominal
NJet/Sherpa values. The scale uncertainties for HEJ (not drawn) are typically +50%

−30%. The
ratio curves are formed by the central values with vertical uncertainty lines resulting from the
propagation of the statistical uncertainties of the predictions and those of the unfolded data
spectrum.
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Fig. 3. – Unfolded four-jet differential cross section as a function of p
(4)
T , compared to different

theoretical predictions, from ref. [2]. The other details are as for fig. 2.

Angular variables. Angular variables are able to test the description of events with small-
and wide-angle radiation, and provide information on the global spatial distribution of
the jets. The Δφmin

3j spectrum is shown in fig. 4. The different p
(1)
T cuts change the spatial

distribution of the events, such that at low p
(1)
T most events contain two jets recoiling

against two, while at high p
(1)
T the events where one jet recoils against three dominate.

In general, the description of the data improves as p
(1)
T increases. For Pythia, the number

of events where one jet recoils against three (low Δφmin
3j ) is significantly overestimated

when p
(1)
T is low; as p

(1)
T increases, the agreement improves such that the p

(1)
T > 1000GeV

region is very well described. Madgraph, Herwig++ and HEJ are mostly in good agreement
with data.

Σpcentral
T variables. These variables set a minimum forward-backward rapidity interval

and measure the total pT of the central jets (Σpcentral
T ). They were defined to test the



6 S. SACERDOTI on behalf of the ATLAS COLLABORATION

min
3j

φΔ
0 1 2 3

) 
[fb

/b
in

 w
id

th
]

m
in

3jφΔ
 / 

d(
σd

1
10

210

310

410

510

610

710

810 ATLAS
-1 - 20.3 fb-1=8 TeV, 95 pbs

Data
 0.6)×Pythia 8 (

 1.4)×Herwig++ (
 1.1)×MadGraph+Pythia (

>100 GeV(1)

T
p

>400 GeV(1)

T
p

>700 GeV(1)

T
p

>1000 GeV(1)

T
p

systematic uncertainty
Total experimental

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

min
3j

φΔ
0 1 2 3

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

min
3j

φΔ
0 1 2 3

) 
[fb

/b
in

 w
id

th
]

m
in

3jφΔ
 / 

d(
σd

1
10

210

310

410

510

610

710

810 ATLAS
-1 - 20.3 fb-1=8 TeV, 95 pbs

Data
 0.9)×HEJ (

 1.0)×BlackHat/Sherpa (
 1.0)×NJet/Sherpa (

>100 GeV(1)

T
p

>400 GeV(1)

T
p

>700 GeV(1)

T
p

>1000 GeV(1)

T
p

systematic uncertainty
Total experimental

 PDF) uncertainty⊕NLO (scale 

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

min
3j

φΔ
0 1 2 3

T
he

or
y/

D
at

a

0

0.5

1

1.5

2

Fig. 4. – Unfolded four-jet differential cross section as a function of Δφmin
3j , compared to different

theoretical predictions, from ref. [2]. In each figure, the left panel shows the full spectra and the
right panel the ratios of the different predictions to the data, divided according to the selection

criterion applied to p
(1)
T . The other details are as for fig. 2. Some points in the ratio curves for

NJet/Sherpa fall outside the y-axis range, and thus the NLO uncertainty is shown partially, or
not shown, in these particular bins.

framework of HEJ, which has been designed to describe events with two jets significantly
separated in rapidity with additional, central, high-pT radiation. The generators with
2 → 2 MEs have problems describing the data around the threshold values where the
contribution from different jets changes, which results in kinks in the ratio distributions.
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Fig. 5. – Unfolded four-jet differential cross section as a function of Σpcentral
T with Δymax

2j > 2,
compared to different theoretical predictions, from ref. [2]. The other details are as for fig. 4.

One such transition occurs at the Σpcentral
T value for which the leading jet is first allowed to

be central. For p
(1)
T > 400GeV, this happens at Σpcentral

T > 464GeV, at which point there
is a major jump in Pythia in the second ratio plot of fig. 5. The discrepancies worsen for
larger cuts in Δymax

2j . Madgraph provides an excellent description of the Σpcentral
T variables,

especially at low p
(1)
T . HEJ gives a good description of the high Σpcentral

T region; while
NJet/Sherpa has a tendency to overestimate the number of events with very low Σpcentral

T

but provides a good description otherwise.
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4. – Conclusions

The NLO predictions, BlackHat/Sherpa and NJet/Sherpa, are almost always compat-
ible with the data within their theoretical uncertainties, which are found to be large
(O(30%) at low momenta) and asymmetric. Within the normalisation scheme used,
Madgraph also provides a good description of the data, as does HEJ, especially at high p

(1)
T .

The description of the jet momenta is compatible with previous measurements of
the multi-jet cross sections. HEJ, NJet/Sherpa and BlackHat/Sherpa give a very good
description of the distributions of the leading jets but show some discrepancy with the
data for p

(4)
T . For variables that are particularly sensitive to wide-angle configurations and

high-pT radiation, such as masses or angles, BlackHat/Sherpa, NJet/Sherpa and Madgraph

do a remarkable job overall. These measurements expose the shortcomings of 2 → 2
parton ME+PS predictions in a variety of scenarios and highlight the importance of the
more sophisticated calculations.
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