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Summary. — The parameter εK , that quantifies CP violation in kaon mixing, is
the observable setting the strongest constraints on new physics with a generic flavour
and CP structure. While its experimental uncertainty is at the half percent level,
the theoretical one is at the level of 15%. One of the largest sources of the latter
uncertainty is the poor perturbative behaviour of the short-distance contribution of
the box diagram with two charm quarks. In this proceeding, based on Ligeti and
Sala arXiv:1602.08494 [hep-ph], I summarise how that contribution can be removed,
from the imaginary part of the mixing amplitude, by a rephasing of the kaon fields.
A first outcome is a mild reduction of the total theoretical uncertainty of εK : while
this might look counterintuitive at first sight, if different “pieces” (i.e. short- and
long-distance) of an observable are computed with different techniques, then it is
possible to choose a phase convention where the total uncertainty of that observable
is optimised. Moreover, it is worthy to discuss if and how this freedom of rephasing,
which has been somehow overlooked in the past, can help in making progress in
lattice QCD computations of immediate relevance for εK .

1. – Motivation and introduction

CP violation (CPV) as a fundamental property of Nature was first established in the
system of K0 and K

0
mesons, with the measurement εK = 2.3 × 10−3 (with a ∼ 20%

uncertainty) performed in 1964 at the Brookhaven National Laboratory [1]. Since then,
εK has played a key role in establishing the CKM picture of flavour and CP violation,
and in determining the related Standard Model (SM) parameters with precision. Today,
the experimental determination of εK has reached the precision of half a percent, while
the theoretical one is still well above the 10% level.

The achievement of a better control of the latter is strongly desirable. Indeed, among
all observables, εK probes New Physics (NP) at some of the highest energy scales. This
holds for both the case in which the NP flavour structure is generic (i.e. all flavour

(∗) E-mail: fsala@lpthe.jussieu.fr

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0) 1



2 F. SALA

and CP violating operators are allowed, with coefficients of order one), and the case
in which it is “CKM-like” (i.e. only the operators that are also present in the SM are
allowed, and each of them with the same parametrical suppression as in the SM), see
e.g. ref. [2] for the updated UTfit [3] results. If one goes beyond those effective field
theory considerations, still εK puts some of the most severe constraints on explicit NP
models, for recent studies see e.g. ref. [4] for supersymmetry and ref. [5] for composite
Higgs models. Thus, in the present situation where no clear evidence for NP has emerged
in flavour and CP violating observables, εK could possibly hide deviations at the level
of its current precision. If, conversely, a deviation from the SM would first show up in
other observables (as the present data of B meson decays seem to suggest [6-10]), then
the level of consistency of these deviations with the properties of K meson decays would
be important to understand their NP origin.

That said, what are the present limiting factors of the εK sensitivity to NP? The first
one consists in the relatively poor knowledge of some CKM parameters, most notably
A (or equivalently |Vcb| = λ2A, λ being the Cabibbo angle) and η̄. This knowledge
is expected to be improved substantially by upcoming measurements at Belle II and
LHCb [11, 12] that, hopefully, will also help solving the current tension between the
exclusive and inclusive determinations of |Vub| and |Vcb| [13].

The largest non-parametric contribution to the εK theoretical uncertainty comes from
the computation of the QCD corrections to the box diagram with two charm quarks,
ηcc. The convergence of its perturbation series, 1 (LO), 1.38 (NLO), 1.87 (NNLO) is
worrisome, the NNLO contribution being larger than the NLO one. Besides computing
the NNLO part, ref. [14] has taken into account this apparently bad convergence by
associating a “large” error to the central value of 1.87, ηcc = 1.87 ± 0.76. The QCD
perturbative corrections to the analogous box diagrams which involve at least a top quark,
ηtt = 0.5765(65) [15] and ηct = 0.496(47) [16], appear instead to be better behaved.
The bad convergence properties of the ηcc perturbative series have induced different
groups to treat it in a different way. Indeed, while CKMfitter [17] uses ηcc as quoted in
ref. [14], UTfit [18] sticks to its NLO calculation. This contributes to the visibly different
εK regions in the plots of the two collaborations, and somehow underlines the need to
improve in that respect.

How then to make progress on the εK SM prediction? The inclusion of the charm
quark on the lattice would, ideally, replace the badly behaved perturbative QCD com-
putation with a more controlled one, see e.g. ref. [19] for a recent discussion specific
to εK , and ref. [20] for updates. Waiting for the first fruits of this proposal, we notice
that ref. [19] (see Appendix A) already mentions that a non-standard approach to the
εK computation(1) might be needed to ease the aforementioned task. This adds to the
motivation to explore other non-standard approaches to the εK computation.

In this proceeding, I review the proposal of ref. [21] to set the ηcc contribution to
the K0-K

0
mass mixing amplitude, M12, purely real. This is achieved by employing the

freedom to rephase the kaon fields, and it removes ηcc from the theoretical prediction of
εK . While physics should of course not depend on the phase convention chosen for the
fields, some dependence remains numerically in this case due to the different techniques
employed to compute different “pieces” entering the εK prediction, namely the calculation

(1) The suggestion of ref. [19] amounts to work with the substitution λc = −λu − λt, instead
of the one λu = −λc − λt, where λq = VqdV ∗

qs and V is the CKM matrix. This suggestion is not
to be confused with our proposal, which regards the freedom to rephase the kaon fields.
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of M12 (consisting of a short- and a long-distance “piece”) and that of the decay mixing
amplitude Γ12 (long distance). The rest of this contribution is organised as follows: in
sect. 2 I review the “usual” SM prediction of εK , in sect. 3 I summarise the impact of a
phase redefinition of the kaon fields, and discuss its implications, in sect. 4 I conclude.

2. – An express review of εK

2.1. εK independently of the kaon phase convention. – The CPV parameter εK is
extracted from the decays into two pions of the neutral kaons mass eigenstates, dubbed
as KL (longer lifetime, heavier eigenstate) and KS (shorter lifetime, lighter eigenstate),
which are mixtures of the states |K0〉 = |ds̄〉 and |K0〉 = |d̄s〉. KL and KS are the
eigenvectors of M − iΓ/2, governing the Schrödinger equation of the K0-K

0
system,

where the mass (M) and the decay (Γ) mixing matrices are 2 × 2 Hermitian matrices.
Their mass and width splittings are Δm = mL − mS = 3.484(6) × 10−12 MeV and
ΔΓ = ΓL − ΓS = −7.3382(33) × 10−12 MeV (� −2Δm). (We refer to the PDG [13] for
all the measured values of observables reported here and in the rest of this contribution.)

Let us introduce the amplitude ratios(2) ηf ≡ 〈f |H|KL〉/〈f |H|KS〉 ≡ A(KL →
f)/A(KS → f), in terms of which εK is defined as

(1) εK =
2η+− + η00

3
,

for f = π+π− and π0π0. Measurements yield |εK | = (2.228±0.011)×10−3, with a phase
φε = (43.51 ± 0.05)◦. One can show that

(2) Re(εK) =
Im(M∗

12Γ12)
4|M12|2 + |Γ12|2

is valid up to relative orders |εK |2 and |ω|ε′/εK , where ω =
〈(ππ)I=2|H|KS〉/〈(ππ)I=0|H|KS〉 � 1/22, and ε′ = ω(η2 − η0)/

√
2 � 3.7 × 10−6.

Concerning the phase of εK , the expression

(3) φε � arctan
2|M12|
|Γ12|

holds up to relative orders |ω2ε′/εK | and Re(εK)2, and up to ratios of amplitudes that
do not exceed a relative contribution of 10−2 to φε. The quantity arctan(−2Δm/ΔΓ) =
43.52◦ is often referred to as “superweak phase”, and differs from the value of φε measured
at experiments by one part in 104, so that the error of eq. (3) neither exceeds that level.

(2) Notice that this definition depends on the arbitrary relative phase between the states KL

and KS , and so it is not physical. Indeed, it is the phase-convention–independent quantity
ηf ≡ (〈f |H|KL〉/〈f |H|KS〉)/(〈K0|KS〉/〈K0|KL〉) that is measured in the interference of |KL〉
and |KS〉 decays in regeneration experiments. In the following, we will never need a non-
zero relative phase between KL and KS , so that the two definitions will be equivalent for our
purposes.
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Using eq. (2) for Re(εK) and eq. (3) for φε one obtains

(4) εK =
eiφε sin φε

2
arg

(
−M12

Γ12

)
= eiφε cos φε Im(−M12/Γ12).

The information about kaon mixing is exhausted by eq. (4) and by the following relations:

(5) Δm = 2|M12|, ΔΓ = −2|Γ12|,

which are valid up to relative orders |εK |2. The relative phase between M12 and Γ12 is
π + O(|εK |), because eq. (2) implies that its sine is small, and the eigenvalue equation
4Re(M∗

12Γ12) = Δm ΔΓ < 0 implies that its cosine is negative.

2.2. εK in the usual phase convention. – To connect the phase-convention–independent
expressions in eq. (4) to actual calculations, we need to consider how M12 and Γ12 are
computed, namely

(6) M12 =
1

2mK
〈K0|H|K0〉, Γ12 =

∑
f

A∗(K0 → f)A(K
0 → f),

where f denotes common final states of K0 and K
0

decays.
The width mixing, Γ12, is dominated by(3) A∗

0Ā0 = −|A0|2 e−2iφ0 , where AI =
A(K0 → (ππ)I) with “I” isospin eigenstate of the pions, and φ0 is the weak phase
of the isospin-zero amplitude. φ0 depends on the arbitrary phase of the kaon fields,
so that the quantity ξ ≡ tan φ0 can take any value between −∞ and +∞. In phase
conventions in which |ξ| � 1 one has

(7) −1
2

arg(−Γ12) = ξ = φ0

up to relative orders |ξ|2. The usual phase convention for the kaons indeed realises
|ξ| < |εK | � 1, and in that phase convention ξ is determined either by the recent
lattice computation Im(|A0|eiφ0) = 1.90(1.22)(1.04) × 10−11 GeV [22], or by the more
precise lattice computation Im(|A2|eiφ2) = −6.99(0.20)(0.84)×10−13 GeV [23] combined
with the measured value of |ε′/ε| = (1.66 ± 0.23) × 10−3 (therefore assuming the NP
contribution to ε′/ε is negligible). The additional input of both determinations of ξ is
|ω| = |A2/A0|(1 + O(|εK |)) � 1/22. Both determinations are thus phase-convention
dependent, and they result in the values for ξ reported in table I.

The choice of a phase convention where |ξ| < |εK | implies that {arg M12, arg Γ12} �
O(|εK |) � 1 (mod π), so that one can write (using also that Δm = 2|M12|)

(8) arg(−M12/Γ12) = arg(M12) − arg(−Γ12) �
2ImM12

Δm
+ 2ξ.

(3) Notice that the minus sign in front of |A2
0| comes from the choice θ = π in CP |K0〉 = eiθ|K0〉,

CP |K0〉 = e−iθ|K0〉. Further notice that the phase θ is not to be confused with the arbitrary
phase of the kaon fields. It is on the latter that we base our rephasing.
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Table I. – Present value of εK in the usual evaluation (upper part) and in our evaluation (lower
part). We also show the values of κε and ξ in the upper part, and κ′

ε and ξ′ in the lower part.

CKM inputs |εK | × 103 κ
(′)
ε ξ(′) × 104

Usual evaluation
tree-level 2.30 ± 0.42 0.963 ± 0.010 −0.57 ± 0.48

SM CKM fit 2.16 ± 0.22 0.943 ± 0.016 −1.65 ± 0.17

Our evaluation
tree-level 2.38 ± 0.37 0.844 ± 0.044 −6.99 ± 0.92

SM CKM fit 2.24 ± 0.19 0.829 ± 0.049 −7.83 ± 0.26

Equation (4) for εK then becomes

(9) εK = eiφε sinφε

(
ImM12

Δm
+ ξ

)
= eiφε sin φε

(
ImMSD

12

Δm
+ ξ +

ImMLD
12

Δm

)
,

where we have separated the short- and long-distance parts of the M12. The calculation of
ImMSD

12 relies on that of the perturbative SM box diagrams and their corrections, and on
the one of the matrix element of the four-quark operator 〈K0|(d̄LγμsL)(d̄LγμsL)|K0〉 =
+ 2

3 BK(μ)f2
Km2

K , where BK(μ) expresses the deviation from the result of the vacuum
insertion approximation. One further defines B̂K , to remove the μ-dependence of BK(μ).
Concerning the long-distance part MLD

12 , the most precise estimate has been given in
ref. [24] using chiral perturbation theory. It is conveniently expressed via the parameter

(10) ρ = 1 +
1
ξ

Im(MLD
12 )

Δm
= 0.6 ± 0.3.

Indeed, to separate the short- and long-distance pieces, the contribution of MLD
12 and ξ

is usually encoded in a factor multiplying MSD
12 ,

(11) κε =
√

2 sin φε

(
1 + ρ

ξ√
2 |εK |

)
.

The above discussion yields the “usual” expression for εK

(12) εK = κε eiφε Ĉε |Vcb|2λ2 η̄
{
|Vcb|2(1 − ρ̄)ηttS0(xt) + ηctS0(xt, xc) − ηccxc

}
,

where(4) xq = [mq(mq)/mW ]2, the Inami-Lim functions S0 can be found for example
in ref. [16], and Ĉε = f2

KB̂K mK m2
W G2

F /(6
√

2 π2 Δm) = (2.806 ± 0.049) × 104. The
reader interested in more details about the contents of this section is referred to sect. II
of ref. [21] and references therein.

(4) The NLO order in λ is accidentally very suppressed, and the NNLO one is O(λ14).
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3. – εK without ηcc

3.1. Rephasing the kaon fields. – With respect to the “standard” phase convention
that leads to eq. (12), one can rephase the kaon fields as

(13) |K0〉 → |K0〉′ = eiλc/|λc||K0〉, |K0〉 → |K0〉′ = e−iλc/|λc||K0〉,

so that

ImM12 → ImM ′
12 = ImM12

Reλ2
c

|λ2
c |

+ ReM12
Imλ2

c

|λ2
c |

� ImM12 + 2λ4A2η̄ ReM12,(14)

ξ → ξ′ = −1
2

Im(Γ12λ
2
c)

Re(Γ12λ2
c)

� −1
2

(
ImΓ12

ReΓ12
+

Imλ2
c

Reλ2
c

)
� ξ − λ4A2η̄.(15)

Since |Im(λc)/Re(λc)| < 10−3, this rephasing has a negligible impact on Re(M12) (and
thus on the expression for Δm), as opposed to the significant impact it has on Im(M12)
(and thus on the expression for εK). This statement relies on the fact that, in every
step, the phase-dependent errors never exceed a relative amount of O(|ξ|2), and in the
new phase convention |ξ′| < 10−3 still holds (see table I). Equations (14) and (15) do
not know the way Im(M12) and ξ are computed, and indeed when they are plugged into
eq. (9) for εK , one sees that the phase-convention dependence manifestly cancels out.
However, if one brings forward the phase-convention separately in MSD

12 , in ξ and in
MLD

12 , then

– in MSD
12 , the ηcc piece becomes purely real (indeed, it was proportional to the phase

we rotated away), and thus it does not manifestly contribute to εK ;

– the ξ value and error change according to eq. (15), see table I;

– using eqs. (14) and (15), and that |ξ| � |ξ′|, we obtain(5)

(16) ρ′ = 0.6 ± 0.2, where κ′
ε =

√
2 sin φε ×

(
1 + ρ′

ξ′√
2|εK |

)
.

The expression of εK in our phase convention then becomes

(17) εK = κ′
ε eiφε Ĉε |Vcb|2λ2 η̄

{
|Vcb|2(1 − ρ̄)ηttS0(xt) + ηctS0(xt, xc)

}
.

3.2. Implications of the rephasing . – We refer to two sets of input CKM parameters,
one from the SM CKM fit results (that therefore assumes that the SM determines all
observables), and one from the tree-level observables only fit (applicable even if TeV-scale
new physics affects the loop-mediated processes), which bares of course larger uncertain-
ties. See ref. [21] for the values of the CKM parameters λ,A, η̄, ρ̄ in the two cases.

(5) Notice that we do not perform the estimate of ref. [24], that leads to eq. (10), directly in the
new phase convention. We just use that result in the usual phase convention, and rephase it.
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Table II. – The present error budget of εK in the usual evaluation (upper part) and using our
evaluation (lower part). The parameters with a corresponding uncertainty above 2% are shown.

CKM inputs ηcc ηct κ
(′)
ε |Vcb| η̄ ρ̄ |ΔεK/εK |tot.

Usual evaluation
tree-level 7.3% 4.0% 1.1% 11.1% 10.4% 5.4% 18.4%

SM CKM fit 7.4% 4.0% 1.7% 4.2% 2.0% 0.8% 10.2%

Our evaluation
tree-level — 3.4% 5.2% 9.5% 8.9% 4.5% 15.6%

SM CKM fit — 3.4% 5.9% 3.6% 1.7% 0.7% 8.4%

The partial and total error budgets of εK are reported in table II, in both the new
and the usual phase conventions. One sees there that the convention we propose yields
to a mild gain in the total εK uncertainty, and increases the relative importance of the
long-distance contribution, encoded in κ′

ε. Its relative importance will increase in the
future, since Belle II and LHCb are expected to improve on the CKM inputs, bringing
their tree-level determinations to a precision comparable to (or better than) the one of
the current SM CKM fit [25], see table II. One might then argue that the LD estimate
of ref. [24] should be rediscussed, strengthening the need to make progress on the lattice
QCD determination of Im(MLD

12 ). A clarification of the roles of the different unphysical
phases can help in this direction.

4. – Conclusions

Without any clear deviation from the SM picture of flavour and CP violation, it is
hard, if not impossible, to obtain clues about a more fundamental theory of flavour.
Among all observables, εK is sensitive to some of the highest energies, and sets some of
the strongest constraints on explicit NP models. Therefore, it is crucial to improve its
theoretical determination, whose uncertainty is much larger than the experimental one.

In this conference proceeding, I explained the recent proposal of ref. [21] to remove
from εK the largest source of non-parametric error, ηcc, via a rephasing of the kaon
fields. As a consequence, the total uncertainty of the εK SM prediction is slightly re-
duced, and the source of the largest (after some of the CKM inputs) error comes from
the long-distance contribution to M12. Our discussion also helps clarifying the role of
different phases in the computation, and we think it would be important to understand
if it can help achieving a better lattice control of the above long-distance contribu-
tion.
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