Colloquia: IFAE 2016

Hypertriton and exotic bound states production in Pb-Pb collisions at the LHC with the ALICE experiment

S. TROGOLO for the ALICE COLLABORATION

University and INFN, Sezione di Torino - Via Giuria 1, Torino, Italy

received 17 October 2016

Summary. — The ALICE Collaboration has studied the production of (anti-) hypertriton, ${}^{\Lambda}_{\Lambda}$ H, and the exotic bound states, H-dibaryon and $\overline{\Lambda n}$, in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The data sample has been collected during the LHC heavy-ion run at the end of 2011. The ${}^{\Lambda}_{\Lambda}$ H has been studied via its two-body mesonic weak decay (${}^{\Lambda}_{\Lambda}$ H $\rightarrow {}^{3}$ He + π^{-}), while the H-dibaryon and $\overline{\Lambda n}$ through their $\Lambda + p + \pi^{-}$ and $\overline{d} + \pi^{+}$ final states, respectively.

1. – Introduction

Heavy-ion collisions at LHC energies provide a unique opportunity to understand the nature of the medium (*Quark-Gluon Plasma*) created during the collision. In heavy-ion collisions many strange hadrons are produced and hyperon-baryon bound systems can be formed. There are two distinct approaches used to estimate the production yield of these systems: thermal model [1] and coalescence model [2].

H-dibaryon and An bound state discovery would provide crucial information on the Λ -nucleon and Λ - Λ interaction.

2. – Hypertriton

The hypertriton ${}^{3}_{\Lambda}$ H is the lightest known hypernucleus and consists of a proton, a neutron and a Λ . Its mass is 2.991 \pm 0.002 GeV/ c^{2} and its lifetime is expected to be compatible with the free Λ lifetime. The ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}\overline{\text{H}}$ production yield were measured through their mesonic weak decay. Topological cuts were applied for the identification of secondary vertices and the production yield was extracted from the invariant-mass distributions of (${}^{3}\text{He}+\pi^{-}$) and (${}^{3}\overline{\text{He}}+\pi^{+}$) pairs.

In the left panel of fig. 1 the measured production yield $dN/dy \times BR$ of ${}^{3}_{\Lambda}H$ is compared to different theoretical models as a function of the branching ratio (BR) of the two-body decay channel. Assuming a theoretical BR = 25% [3], the models in agreement

© CERN on behalf of the ALICE Collaboration

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

Fig. 1. – Left: dN/dy comparison to different models for the ${}^{3}_{\Lambda}H$ measurement. Right: ${}^{3}_{\Lambda}H$ lifetime (τ) measured by the ALICE Collaboration compared to the published results.

with the measured yield are the equilibrium statistical model (GSI-Heidelberg [1]), with a temperature $T_{chem} = 156 \text{ MeV}$, and the Hybrid UrQMD model [2], which combines the hadronic transport approach with an initial hydrodynamical stage for the hot dense phase.

The total sample of ${}^{3}_{\Lambda}$ H and ${}^{3}_{\overline{\Lambda}}\overline{H}$ has been divided into four intervals of ct = MLc/p. M is the mass and it has been fixed to 2.991 GeV/ c^2 , L is the decay length, c is the speed of light and p is the particle momentum. An exponential fit to the dN/d(ct) distribution was performed to determine the proper decay length, which is $c\tau = 5.4^{+1.6}_{-1.2}$ (stat.) ± 1.0 (syst.)cm. In the right panel of fig. 1 the lifetime measured by ALICE, $\tau = 181^{+54}_{-39}$ (stat.) ± 33 (syst.) ps, is contrasted with the free Λ lifetime and with previous measurements of the hypertriton lifetime. The orange band shows the statistical combination of the experimental lifetime estimates available which leads to $\tau = 216^{+19}_{-18}$ ps [4], in agreement with ALICE measurement.

3. – Exotic bound states

The H-dibaryon is a hypothetical *uuddss* bound state ($\Lambda\Lambda$) first predicted by Jaffe [5] using a bag model approach. In this analysis the $\Lambda p\pi^-$ decay channel of the H-dibaryon was investigated, under the assumption of a weakly-bound state. Since no evidence of a signal for the H-dibaryon was found in the invariant mass distribution, an upper limit (99% CL) of dN/dy was obtained, assuming a BR = 64% and the free Λ lifetime. The limit ~ 3.0 × 10⁻⁴ is a factor 20 below values predicted by the thermal models $(dN/dy \approx 6 \times 10^{-3})$.

The $\overline{\Lambda n}$ bound state was investigated in the decay $\overline{d}\pi^+$, but no signal was found in the invariant mass distribution. Assuming a BR = 54% and the free Λ lifetime, this led to an upper limit (99% CL) of $dN/dy \sim 2.0 \times 10^{-3}$ that is a factor 20 below values predicted by thermal models $(dN/dy \approx 4 \times 10^{-2})$.

A detailed description of the results on the hypertriton and the exotic bound states can be found in [6] and [7]. HYPERTRITON AND EXOTIC BOUND STATES PRODUCTION IN Pb-Pb COLLISIONS ETC.

3

REFERENCES

- [1] ANDRONIC A. et al., Phys. Lett. B, 697 (2011) 203.
- [1] INDROMO II. OF all, Phys. Lett. B, 714 (2012) 85.
 [3] GLOECKLE W. et al., Nucl. Phys. A, 639 (1998) 297.
- [4] RAPPOLD C. et al., Phys. Lett. B, 728 (2014) 543.
 [5] JAFFE R. L., Phys. Rev. Lett., 38 (1977) 195; 38 (1977) 617(E).
- [6] ALICE COLLABORATION, Phys. Lett. B, 754 (2016) 360.
- [7] ALICE COLLABORATION, Phys. Lett. B, **752** (2016) 267.