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Summary. — The thermalization of a strongly coupled plasma is examined in
the holographic framework through non-local observables: the equal-time two-point
correlation function of a large dimension boundary operator, and Wilson loops of
different shapes. The evolution of the probes from an initial far-from-equilibrium
state to a hydrodynamic regime is found to depend on their size. A hierarchy among
the thermalization times of the energy density, the pressures and the large size
probes, is identified: the relaxation process is faster at short distances.

1. – Boundary sourcing and local probes

In recent experiments of relativistic heavy-ion collisions realized at the Brookhaven
RHIC and at the CERN LHC, the production of a deconfined and strongly coupled
quark-gluon plasma (QGP) has been detected. The QGP expands anisotropically and
cools, reaching the hydrodynamic regime after a time of order 1 fm/c. The relaxation
towards equilibrium can be studied in the holographic approach, a framework inspired
by the gauge/gravity correspondence. This conjecture relates a strongly coupled Super-
Yang Mills gauge theory defined in a 4-dimensional Minkowski space (boundary) with a
dual classical gravity theory living in a 5-dimensional anti-de Sitter space (bulk) times a
compact manifold [1]. The evolution of the QGP initial state, anisotropic and far from
equilibrium, can be examined by introducing an impulsive perturbation (quench) to the
metric on the boundary, and then solving the Einstein equations in the bulk [2]. In
our analysis, the external sources that distort the boundary metric are chosen to mimic
processes in which a small number of collisions occur. As the quench becomes static,
the system starts to relax towards the hydrodynamic regime. The boundary coordinates
are denoted as xμ = (x0, x1, x2, x3), with x3 = x|| the collision direction. We assume
that the geometry is invariant under boost transformations along this axis and under
translations and rotations in the transverse plane x⊥ = (x1, x2). The Minkowski line
element ds2

4 = −dτ2 +dx2
⊥ + τ2dy2, with τ the proper time and y the spacetime rapidity

(x0 = τcoshy and x|| = τsinhy), is perturbed through the quench γ(τ) as follows:

(1) ds2
4 = −dτ2 + eγ(τ)dx2

⊥ + τ2e−2γ(τ)dy2.
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Fig. 1. – Upper left: profile of the quench γ. Upper right: geodesics length L for different values
of the size �. Lower left: difference ΔL between the geodesics lengths of size � in the quenched
and in the hydrodynamic geometries. Lower right: non-local probes ΔL, ΔAR and ΔAC/� at
the isotropization time t0 = 6.

The stress-energy tensor on the boundary yields a local probe of the relaxation process
and a measure of the residual anisotropy in the plasma. Its components, the energy
density and the pressures longitudinal and transverse with respect to the collisional
axis, have been computed for different quench profiles and compared to the viscous
hydrodynamics behaviour. Regardless of the considered distortion, hydrodynamization
of the stress-energy tensor is a two-step process: the energy density acquires the viscous
form as soon as the quench is switched off, while pressure isotropy is restored with a
time delay of order of 1 fm/c, for an effective temperature at the end of the quench of
about 500 MeV [3]. Such description can be compared to the one deduced from the time
evolution of non-local observables [4], as presented in the next section for a particular
distortion profile [5].

2. – Non-local probes

The relaxation process can be monitored through non-local probes, such as the two-
point correlation function of boundary theory operators, and expectation values of Wilson
loops defined on the boundary [5]. The system under investigation is driven out-of-
equilibrium by boundary sourcing using a sequence of two nearly overlapping pulses, as
shown in fig. 1 (top left).

We consider the correlation function of a boundary scalar operator O with large
conformal dimension Δ � 1, between two equal-time points having a spatial separation
� in the transverse plane: P = (t0,−�/2, x2, y) and Q = (t0, �/2, x2, y). In the holographic
picture, this observable can be approximated as 〈O(P )O(Q)〉 � e−L(t0,�)Δ, where L(t0, �)
is the length of the geodesic that connects the boundary points and extends in the bulk
at fixed (x2, y). Figure 1 (top right) shows the evolution of L for several values of the
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distance � between the points in the correlation function: the curves follow the distortion
profile, with a time delay that increases with the size of the probe. In order to evaluate
the degree of thermalization of the system, it is interesting to examine the difference
ΔL between the length L in the geometry under investigation and the same observable
computed in a bulk metric reproducing the viscous hydrodynamic time dependence of
the stress-energy tensor [5]. The evolution of ΔL after the end of the quench is shown
in fig. 1 (bottom left) for different values of �. Each curve is plotted starting from the
value of the physical time t̃0(�), at which it is no longer affected by the quench.

An analogous approximation can be used to compute the expectation value of the
Wilson loop along a closed contour C of linear size � and fixed time t0 on the boundary:
〈WC〉 � e−A(t0,�), with A(t0, �) the area of the extremal surface bounded by C and
plunging in the bulk at fixed y. Two shapes for C have been considered: a rectangular
strip of finite width � along the x1 axis and infinite length along x2, and a circular path
of diameter � in the transverse plane x⊥ = (x1, x2). The areas of the extremal surfaces
bounded by these contours, AR and AC, respectively, and the differences ΔAR and ΔAC

between the observables in the quenched and in the hydrodynamic geometries, have been
worked out in [5]. The behaviour of such quantities resembles the one in fig. 1 (top right
and bottom left) for the geodesics case.

The time at which each non-local probe reaches the viscous hydrodynamic regime
depends on its size: for larger boundary separation between the geodesics extremes or
among the contour points, the quantities L, AR and AC take longer to equilibrate. The
thermalization time can be identified with the half-life t1/2(�), defined as the value of t0
at which ΔL, ΔAR and ΔAC are reduced by a half with respect to their values at time
t̃0(�). The analysis reveals that t1/2(�) exceeds the thermalization time obtained from
the stress-energy tensor for boundary separations � � 1, and increases linearly with � for
larger probes. A hierarchy among the relaxation times of the energy density, pressures
and large probes emerges, indicating that thermalization is faster at UV scales. Although
the three non-local observables have the same qualitative behaviour with t0 and �, their
half-lives and thermalization length scales are quantitatively different. For a comparison,
we show in fig. 1 (bottom right) the �-dependence of the quantities ΔL, ΔAR and ΔAC/�
at the physical time t0 = 6 at which pressure isotropy is restored in the plasma [3]. It is
possible to identify for each function a transition to a linear regime. The inflection point
of the first derivative can be used to characterize the onset of the linear behaviour, and
defines the length scale above which the probe is not thermalized at the chosen time [5].
The rectangular Wilson loop thermalizes slower than the other non-local probes.
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