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Summary. — A recently observed phenomenon involving magnetic islands in
high-density pulses in the Frascati Tokamak Upgrade is investigated using numer-
ical simulations in slab geometry. This phenomenon was given the name “limit
cycles” because of the figure drawn by the trajectory of the system in the am-
plitude/frequency plane of magnetic islands. In this regime of propagation, the
magnetic islands show a quasi-periodic modulation of their amplitude and rotation
frequency. The Fourier analysis of the experimental signals shows a large harmonic
content, which we ascribed to a significant island deformation in the cycle phase.
We performed a series of numerical simulations by integrating a four-field system of
equations through a finite difference code to check this hypothesis. The results of
the simulations show that a large density gradient causes a significant island defor-
mation in the nonlinear regime, in agreement with our hypothesis. This deformation
is caused by the diamagnetic velocity shear resulting from the nonlinear flattening
of the density profile inside the island separatrix.

1. – Introduction

Tearing modes play a key role in magnetically confined plasmas for thermonuclear
interest. The nonlinear growth of these modes leads to the formation of the so-called
magnetic islands. Magnetic islands are an important issue because they cause an in-
creased radial heat and particle transport, thus compromising confinement, and they
may also lead to major disruptions. In the linear phase, magnetic islands grow as a
consequence of the tearing mode instability [1]. As soon as their width becomes larger
than the linear resistive layer, the nonlinear effects become dominant on the plasma
inertia [2], the current becomes approximately a flux function J(ψ) and the temporal
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growth changes from exponential to algebraic. An extension of the tearing mode to finite
pressure gradient is the drift-tearing mode [3]. In the presence of an equilibrium density
or temperature gradient, the tearing mode acquires an oscillation frequency close to the
electron drift frequency and the growth rate is significantly reduced. Many factors affect
the linear stability and the mode structure of the drift-tearing mode. As stressed in [4],
in the drift-tearing mode, with resistivity as the only dissipative effect, the unstable so-
lutions are non-localized and they exist only in the form of traveling waves. However,
any additional dissipative effect, such as viscosity or diffusivity, causes the mode to be-
come localized. In the semi-collisional regime, instead, the mode becomes localized even
without additional dissipative effects because of the finite ion-acoustic radius. As we will
see below, this is the case of the typical experimental regimes we investigated.

The paper is organized as follows: in sect. 2 we introduce the phenomenon of “limit
cycles” we attempted to reproduce in the simulations; in sect. 3 we illustrate the model
equations we integrated numerically; in sect. 4 we describe the code we used and the
benchmarking we performed in the case of small-density-gradient; in sect. 5 the results of
our simulations in the case of large-density-gradient are displayed; conclusions are drawn
in sect. 6.

2. – Experimental observations of “limit cycle” tearing mode dynamics

Recent experimental observations on Frascati Tokamak Upgrade (FTU) have shown
the existence of a new regime of propagation of magnetic islands, characterized by a quasi-
periodic modulation of their amplitude and rotation frequency, which was given the name
“limit cycles” [5]. The name limit cycles comes from the shape of the phase portrait of
the system on the amplitude/frequency plane. The modes observed in these series of
experiments are characterized by the poloidal and toroidal mode numbers m = 2 and
n = 1, respectively. The presence of a phase difference between amplitude and frequency
modulations causes the phase portrait to resemble a closed cycle.

Large magnetic islands appear in FTU when the plasma density is either extremely low
or extremely high (close to the disruptive density limit [6]). Limit cycles are observed
in the second case, whereas amplitude and frequency evolution is smooth in the first
case. Measured magnetic field oscillations in low-density pulses have lower frequency and
remarkably higher amplitude than in high-density pulses. Pulses featuring “limit cycles”
are characterized by large temperature and density gradients around the q = m/n = 2
rational surface. The occurrence of these large gradients gives rise to large values of the
diamagnetic frequency ω∗, which exceeds the characteristic resistive growth rate. The
collisionality regime is intermediate between collisional and semicollisional [7], the ratio
between resistive layer width and ion-acoustic radius being of order unity. The typical
island width (1–2 cm) is well above the characteristic size for non linear density flattening
by collisional parallel transport and by the action of ion-acoustic waves [8]. In fig. 1 we
show the signals corresponding to the “limit cycle” activity during pulse #34843 in FTU
(figures taken from [5] with permission of the authors). The five panels in the left figure
show, from top to bottom: the electron density, the time derivative of the instantaneous
poloidal magnetic field, the instantaneous poloidal magnetic field, the envelope of the
signal above (amplitude in a.u.) and the oscillation frequency. The right figure shows
a single period of the amplitude and frequency oscillations taken from the same pulse.
Furthermore, the Fourier analysis of the experimental signals (not displayed here) shows
a large harmonic content, in particular in the decreasing phase of the cycle, which we
ascribed to a significant island deformation. We attributed this deformation to the shear
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Fig. 1. – Left figure, from top to bottom: electron density, time derivative of the instantaneous
poloidal magnetic field, instantaneous poloidal magnetic field, envelope of the signal above
(amplitude in a.u.) and oscillation frequency. Right figure: same quantities as above for a single
period of the amplitude and frequency oscillation. Figures taken from [5] with permission of the
authors.

in the diamagnetic drift velocity which arises in the nonlinear regime when the density
profile becomes flat inside the separatrix because of the action of the ion-acoustic waves,
which is expected to become significant when the island width W becomes larger than
the ion-acoustic radius ρs times Ls/Ln [9], or by the collisional parallel transport, which
is the dominant mechanism in the semi-collisional regime [8].

3. – Modified four-field model

Here we present the system of equations we integrated numerically to explore the
time evolution of the fields close to a magnetic island. This model includes the effects
of finite ion-acoustic radius ρs, the finite-β effects, the diamagnetic drift frequency ω∗
and the nonlinear flattening of the density profile inside the separatrix. The starting
equations are

E + V e ∧ B +
∇Pe

en0
= ηJ ,

∂n

∂t
+ V · ∇n + n∇ · V = 0,

min0

(
∂V

∂t
+ V · ∇V

)
= J ∧ B −∇P.(1)

The first of eqs. (1) is Ohm’s law, corresponding to the electron momentum equation
without the electron inertia. The second one is the continuity equation, the third one
is the sum of the ion and electron momentum equations. The fourth equation we need
is the vorticity equation, which comes from taking the curl of the momentum equation.
We assume the following form for the electromagnetic fields:

(2)
E‖ = −∇‖φ − êz∂tψ,

B = êzB0 + ∇ψ ∧ êz;

Equations (1) are successively reduced in order to remove the fast dynamics associated
with the fast magneto-acoustic waves [10] and then turned dimensionless by choosing an
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appropriate normalization for the fields. V‖e can be expressed in terms of V‖i by using
the definition of the parallel current J‖ = ne(V‖i − V‖e). The four fields we are going
to use are the magnetic flux function ψ, the density n, the electrostatic potential φ and
the parallel ion velocity V . The current J‖ is determined by Ampere’s law. We choose
to normalize the time-derivative to the Alfvén time τA and the radial distance x to the
shear length Ls. The normalization of the fields is shown below:

(3)
ψ̂ =

A‖
B0Ls

, φ̂ =
φ

B0vALs
, n̂ =

n

n0

Ln

Ls
, Ĵ‖ = J‖

μ0Ls

B0
,

V̂‖ =
V‖
vA

Ls

Ln
, η̂ = η

τA

μ0L2
s

, ∂t̂ = τA∂t, ∂x̂ = Ls∂x, ∂ŷ = ∂y/kθ,

where kyvA = τ−1
A and ky is the poloidal wavenumber (equivalent to m/rs in cylindrical

geometry). By using the normalization eqs. (3), our four-field system becomes

(4)

∂ψ̂

∂t̂
+

[
φ̂ − β

2
δi

Ln
n̂, ψ̂

]
+ η̂Ĵ‖ = 0,

∂n̂

∂t̂
+

[
φ̂, n̂

]
+

(
Ln

Ls

)2 [
V̂‖ +

δi

Ln
Ĵ‖, ψ̂

]
= 0,

∂V̂‖

∂t̂
+ [φ̂, V̂‖] +

(
Ls

Ln

)2
β

2
(1 + τ)[n̂, ψ̂] = 0,

∂

∂t̂
∇̂2φ̂ + ∂x̂

[
φ̂ + τ

β

2
δi

Ln
n̂, ∂x̂φ̂

]
+ [Ĵ‖, ψ̂] = 0.

In the equations above, β/2 = c2
s/v2

A, c2
s = Te/mi is the ion-acoustic velocity and

δi = ωpi/c is the ion inertial skin length.

4. – Implementation and benchmark of the code

In our simulations, we chose a Harris equilibrium [11] B(x) = B0 tanh(x), whose
linear stability parameter, normalized to the poloidal wavenumber ky, is [12]

(5) Δ′ = 2
(

1
k
− k

)
;

Equations (4) have been integrated numerically by splitting all the fields in two parts:
an equilibrium, independent of time, and an evolving perturbation. The perturbed com-
ponent is advanced in time by an explicit, fourth order Adam-Bashforth scheme. The
equations are solved in a 2D-slab geometry, with periodic boundary conditions along the
y-direction. Dirichlet conditions are applied at the edges of the x-axis, imposing that all
the perturbed fields go to zero. The integration box is defined by −Lx < x < Lx and
−Ly < y < Ly, where k = 1/Ly is imposed. Lx must be chosen large enough to allow
the fields to go smoothly to zero. The choice of Ly instead determines the linear mode
instability through the stability parameter Δ′ [13].

To begin with, we performed a series of numerical integrations in the case of a small
density gradient. We integrated eqs. (4) by choosing a set of parameters such that the
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Fig. 2. – Contour curves of the current J (left) and radial profile of the density across the O-point
(right) in the nonlinear regime of the drift-tearing mode for the choice Δ′ = 3 and β = 0.05.

diamagnetic effects do not modify significantly the nonlinear island dynamics and consis-
tent with the simulations performed in [4]. The normalization chosen in the paper above
introduces the parameter ρ, corresponding to the ion-acoustic radius ρs normalized to
the gradients length scale L. The relation between the parameters entering our equations
and the quantities ρ and ω∗ is provided below:

(6) ω∗ =
β

2
δi

Ln
, ρ2 =

β

2
δ2
i

L2
s

.

First we checked the linear growth rates, as determined by the logarithmic time-derivative
of the magnetic flux function ψ in the X-point of the island. By computing this quantity
as the slope of log |ψ|, we found the growth rate γ = d log |ψ|/dt ≈ 0.0003. This value is
in good agreement with that obtained by using the analytical expression for the growth
rate eq. (7) below, with the following choice of the parameters: ω∗ = 0.0031, ρ = 0.02,
Ln = Ls = 1, β = 0.05 and δi = 0.13. To be consistent with [4], the simulations relative
to the case above were performed with Δ′ = 0.41. Note that, with this choice for the
parameters, we are in the so-called semi-collisional regime [4, 7]. In the semi-collisional
regime, the ion-acoustic radius is larger than the linear resistive layer and the small-Δ′

condition holds, which authorizes the constant-ψ approximation. In this regime, the
following expression for the linear growth rate holds [4]:

(7) γ ∼
√

2
2π

Δ′ ρη1/2

ω
1/2
∗

.

To check the behavior of the drift-tearing mode in the nonlinear regime, we chose to
increase the Δ′ parameter to Δ′ = 3, leading to a much more rapid growth, while still
verifying the conditions mentioned above. In fig. 2 we show on the left the contour curves
of the current J , which is nearly a flux function, and on the right the radial profile of the
density across the O-point of the island. A partial flattening of the density profile occurs
inside the island separatrix, which is larger at the O-point. This flattening is caused
either by the action of the ion-acoustic waves, or by the collisional parallel transport, as
mentioned above.
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Fig. 3. – Logarithm of |ψ| during the reversal of the island growth (left) and harmonic content
(right) for the choice Δ′ = 3 and β = 0.52.

5. – Numerical simulation of “limit cycles”

The “limit cycle” activity only occurs in plasma pulses presenting a large density
or temperature gradient, giving rise to large diamagnetic velocities. For this reason we
performed a series of simulations with eqs. (4) by assuming a large equilibrium density
gradient. As in the benchmark attempt with low drift velocity, we chose a linear density
profile providing a homogeneous drift velocity. However, we expected the island deforma-
tion to take place only in the nonlinear regime, when the partial flattening of the density
profile inside the island separatrix would cause a diamagnetic velocity shear to occur
across the separatrix. Unlike in the previous attempts, we did not have any reference
in the literature to choose a set of parameters providing an island deformation compa-
rable with the one observed in the experiments, so we had to increase progressively the
parameters entering the diamagnetic drift velocity eq. (6) until a significant deformation
of the island was reached.

We performed different simulations by varying two important parameters which de-
termine the nonlinear island dynamics, that is Δ′ and β, while keeping the others fixed:
Ln = 0.1, Ls = 1, δi = 0.5, η = 0.001. This choice turned out to be the best for explor-
ing the parameter space, while trying to obtain a significant island deformation. The
values for Δ′ we chose for our different attempts come from the expression eq. (5), which
holds for the magnetic equilibrium we chose in our simulations. In particular, the values
Δ′ = 3, and Δ′ = 5.3 which we use below correspond to Ly = 2, and Ly = 3 respectively,
where Ly is the half width of the integration box in the y-direction, and k = 1/Ly is
imposed. The β parameter is directly proportional to the diamagnetic drift frequency
ω∗i and causes a reduction in the island growth rate. If the diamagnetic drift frequency
is large enough, it causes a reversal in the island growth in the nonlinear phase. This is
the kind of behavior we observed in our simulations. In fact, the hypothesis we wanted
to test was that the diamagnetic effects cause the island deformation in the nonlinear
regime, which in turn causes the cyclic activity, and the reversal of the island growth is
a key feature of the “limit cycles”.

Simulations performed on long time intervals show that the island, after the reduction
phase, starts to grow again; then, after its size has increased enough, the growth inverts
again and the island starts to decrease. This kind of behavior is consistent with the
presence of a nonlinear stabilizing effect of the diamagnetic drift velocity, which causes
a major deformation when the island width is larger. Every time the island experiences
this reversal in its growth, the y-profile of ψ shows a significant component of the second
harmonic, which is associated with an island deformation. This peculiar behavior is
displayed in fig. 3, where two periods of this amplitude variation are shown.
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Fig. 4. – Logarithm of |ψ| for the choice Δ′ = 3 and for two different values of β: on the left
β = 0.05 and on the right β = 0.52.

For the sake of clarity, we show in fig. 4 the comparison between the log |ψ| for the
choice Δ′ = 3 and for two different values of β. The left figure corresponds to β = 0.05
and the right figure corresponds to β = 0.52. In the first case the island width grows
monotonically and tends to its saturation, while in the second case a reversal of the island
growth occurs in the nonlinear regime.

To measure the island deformation, we chose to consider two indicators which are
strictly related, namely the second y-derivative of ψ computed in the X-point on the
resonant surface and the full width at half maximum (FWHM) of the same function.
Also, we performed a Fourier analysis of the y-profile of ψ to see its harmonic content.
In particular, we were interested in the relative weight of the second harmonic compared
to the fundamental one. We show in fig. 5 the logarithm of |ψ| (top left), the second
derivative in the X-point (bottom left), the FWHM (top right) and the harmonic content

Fig. 5. – Logarithm of |ψ| (top left), FWHM (top right), second derivative in the X-point
(bottom left), harmonic content (bottom right) for the choice Δ′ = 3 and β = 0.52.
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Fig. 6. – Contour plot of ψ (top left), contour plot of n (top right), y-profile of ψ (bottom left),
density radial profile (bottom right) for the choice Δ′ = 3 and β = 0.52.

of the y-profile of ψ, fundamental and second harmonic (bottom right) for the choice
Δ′ = 3 and β = 0.52. We display in this picture the zoom in the nonlinear phase across
the first reversal of the growth to show the correlation between these indicators. The
second derivative in the X-point is normalized to the full amplitude of the y-profile of ψ,
so as to compensate for the increase in the amplitude, while the FWHM is normalized
to the half-period of the equivalent sinusoidal wave, so that it is expected to be one
when the signal is not distorted. These quantities are affected by the distortion of the
signal, which corresponds to the large component of the second harmonic, in opposite
ways: while the FWHM increases, the second derivative in the X-point decreases. Both
the indicators provide a measure of the stretching of the X-point caused by the island
deformation; however, the second y-derivative in the X-point is more affected by the
peaking of the current profile which occurs in the large-Δ′ regime, while the FWHM is
not particularly affected by this phenomenon.

We display in fig. 6 the contour plots of the magnetic flux ψ and of the density n for
the choice β = 0.52 to show the island deformation in the nonlinear regime and the fact
that the density is a flux function. We also show in the same picture the shape of the
corresponding y-profile of ψ and the density radial profile, which is partially flattened
inside the separatrix. The field profiles have been taken at the reversal point of the island
growth, where the island width reaches the maximum.

Attempts with lower values of Δ′ did not show any significant deformation of the
island. Attempts with even larger Δ′ have been made to see whether larger island
deformations could be obtained. We made a few simulations with the choice Δ′ = 5.3
and for different values of β. By increasing Δ′ also the saturation width increases, and the
diamagnetic effects in the nonlinear regime play a major role in the island deformation.
On the other hand, the large Δ′ also causes a significant current density peaking in
the X-point when the island width grows above a threshold value [14]. This causes the
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Fig. 7. – Contour plot of ψ (top left), contour plot of n (top right), y-profile of ψ (bottom left),
density radial profile (bottom right) for the choice Δ′ = 5.3 and β = 0.6.

simulation to fail shortly after the island has reached the nonlinear regime, preventing
any attempt to study the full-nonlinear behavior of the magnetic island in this regime
of large Δ′. Also, the current peaking in the X-point compromises the validity of the
second y-derivative of ψ as a deformation indicator, as mentioned above. We show in
fig. 7 the field profiles taken at the reversal of the island growth, as in the previous
attempts, for the choice Δ′ = 5.3 and β = 0.6. It is evident from this picture that the
island deformation is much larger than before and the flattening of the density profile
inside the separatrix is complete.

6. – Conclusions

In this paper we illustrated the attempts we have made to numerically simulate the
phenomenon of “limit cycles”, occurring in high-density pulses characterized by large
density and temperature gradients in FTU. We performed several attempts with different
values of the parameters entering our equations, namely Δ′ and β, to understand the
key factors which cause the onset of the “limit cycles”. In particular, the attempt with
Δ′ = 3 and β = 0.52 produced an amplitude evolution of the island which is in qualitative
agreement with the one observed in the experiments during the cycle activity. The
deformation of the y-profile of ψ at the reversal point of the island growth is supported
by the two indicators we chose to calculate. Also, the presence of a large component of the
second harmonic of the signal suggests that the island becomes significantly deformed
when entering the nonlinear regime. The flattening of the density profile inside the
separatrix suggests that the deformations may be caused by the shear in the diamagnetic
drift velocity. If that is the case, the reversal in the growth is caused by the partial
fragmentation of the island and not by a linear stabilization mechanism. To further
support the hypothesis that this kind of dynamics causes the cycle activity, an accurate
analysis of the mode frequency is necessary. We leave this task to a future work.
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