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Summary. — Lattice field theory and lattice QCD, in particular, are areas of
research in which Roberto was strongly interested practically since the beginning of
his scientific career. He contributed to the development of lattice QCD through his
ideas and publications, but also through his engagement in the APE project and in
many other ways as well. Some of the work we did together is recalled in this talk
and put in the context of the situation in the field at the time.

1. – Introduction

My collaboration with Roberto started in 1993, when he invited Rainer Sommer, Peter
Weisz, Ulli Wolff and me to Rome to make plans for some common research work. Our
immediate scientific goal was to further develop and apply the step-scaling technique in
lattice QCD, using numerical simulations and the APE100 computers. At this memorable
first collaboration event, Roberto, Nicola Cabibbo and Simone Cabasino introduced us to
the hardware and software of these massively parallel machines, which had just become
available for physics computations.

As far as I know, Roberto’s first paper on lattice field theory and numerical simulations
appeared in 1981 [1]. In the following years, he got more and more interested in this
field of research, gave lectures on lattice QCD at Cargèse in 1987, engaged himself in the
APE project and created a group of young lattice physicists at Tor Vergata. His main
motivation was no doubt the perspective of obtaining quantitative results for hadron
matrix elements and related quantities, but he had a broad approach to the subject,
where the development of new field-theoretical concepts, for example, was considered to
be an essential part of the research effort.

2. – Lattice QCD in the early ’90s

A hot research topic at the time was non-perturbative renormalization, i.e. the
question of how exactly the properties of the theory at low energy are related to the
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Fig. 1. – Step scaling proceeds from high energies (physically small L) to low energies through
a recursive procedure. Each cycle of the recursion consists of a scale-evolution and a renormal-
ization step. In the evolution step, the bare parameters of the theory are held fixed and L is
increased by a factor 2. The lattice spacing is then increased by a factor 2 in the subsequent
renormalization step at fixed renormalized coupling and quark masses.

renormalized parameters and fields defined at high energies. Lattice QCD had already
been shown to be a valid ultraviolet regularization of QCD to all orders of perturbation
theory, but the existence and universality of the continuum limit at the non-perturbative
level was still a largely open issue. Another closely related topic that received much
attention was the Symanzik improvement programme, where one attempts to accelerate
the convergence to the continuum limit by adding irrelevant terms to the action and the
local fields.

Computations of quantities of phenomenological interest, on the other hand, were
hampered by various purely technical difficulties. The inclusion of the sea quarks in the
numerical simulations was practically infeasible, for example, and the known simulation
algorithms scaled poorly with the quark masses and the lattice spacing. Moreover, high-
performance computing was still largely based on expensive vector-processing machines.

3. – Step scaling

Calculations of hadron masses and matrix elements in lattice QCD require lattices
with a spatial extent of at least a few fm to be simulated. The properties of the theory at
high energies can, in principle, be determined on the same lattices, provided the lattice
spacings are significantly smaller than the shortest distances considered. Such lattices
would however have hundreds if not thousands of points in each direction and would, at
present, be quite impossible to simulate.

Step scaling is a non-perturbative renormalization technique that does not require a
wide range of physical scales to be accommodated on a single lattice [2]. It makes use
of an intermediate renormalization scheme for the gauge coupling, the quark masses and
the local operators of interest, where the lattice size L is taken to be the renormalization
scale. The dependence on the latter can then be determined by simulating a sequence of
matching lattices (see fig. 1). Moreover, contact with the fundamental low-energy scales
can easily be made at large L, while at physically small L (corresponding to values of
1/L of, say, 100 GeV) perturbation theory may be used to convert from the intermediate
to any standard infinite-volume scheme.

Roberto was very interested in this new technique and tried it out with his team in
the SU(2) Yang-Mills theory, using a particular intermediate scheme [3]. A plot of the
running coupling obtained in the course of this work and of another coupling previously
calculated in ref. [4] is reproduced in fig. 2. The fact that the two schemes could be
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Fig. 2. – Scale dependence of the running coupling computed by Roberto et al. [3] (points labeled
“Twisted Polyakov loops”) and another coupling defined in a completely different way [4] (points
labeled “Schrödinger functional”). The renormalization scale of the latter has been scaled by a
constant factor so as to match the two couplings at high energies.

matched by a rescaling of the renormalization scale and that both accurately followed
the perturbative evolution down to fairly low energies came a bit as a surprise. Relating
the low- to the high-energy perturbative regime of the theory thus proved to be easier
than suspected, at least in the simple theory considered in these early studies.

There was, however, still a lot of work to be done before the systematic errors were
fully understood. The continuum limit had to be taken carefully and further verification
of the independence of the final results on the choice of the intermediate scheme was
desirable. Filling these gaps was the first goal of the ALPHA Collaboration, the collabo-
ration that started with the meeting in Rome previously mentioned. In a paper entitled
“Universality and the approach to the continuum limit in lattice gauge theory” [5], many
details were sorted out and the viability of step scaling was definitely established. A nice
quantitative result obtained in this paper is the value

(1) αs(q) = 0.1288(15)(21) at q = 200/r0 � 80GeV

of the strong coupling in the MS scheme of dimensional regularization at a high momen-
tum q given in units of the Sommer radius r0 [6] (a characteristic low-energy scale defined
through the heavy-quark potential). The value of the coupling cannot be compared with
the experimental one, since the simulated lattice theory did not include the quarks and
the gauge group was set to SU(2) instead of SU(3). But the calculation demonstrated
that step scaling can deliver results with small systematic and statistical errors.

The required simulations have all been carried out on APE100 machines at Tor Ver-
gata and at DESY, where the first of these computers were installed in 1994 (see fig. 3).
DESY bought many APE machines in the following years and also participated in the
development of the next generations of APE computers. Step scaling later became an
industry, with application mainly in QCD and technicolour theories. The ALPHA Collab-
oration changed its composition over time, expanded the scope of its scientific programme
and established itself as a most successful international lattice QCD collaboration.
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Fig. 3. – First APE100 machines delivered to DESY. The box on the left (a “Q16”) hosts 128
processors connected by a 32× 2× 2 toroidal network. Standing behind the machines are (from
left to right) Zoltan Fodor, Stefan Sint, Istvan Montvay, Martin Lüscher, Hubert Simma, Karl
Jansen, Marcus Speh and Rainer Sommer.

4. – Overcoming the quenched approximation

Since the virtual effects of the quarks are difficult to include in the simulations, lattice
QCD was often studied neglecting them. The valence quarks (and thus the quark prop-
agators connected to the local operators in the correlation functions considered) were
however not dropped nor were their interactions with the gluons and of the gluons with
themselves. The approximation (referred to as the “quenched” or “valence” approxima-
tion) works pretty well at large quark masses, but violates unitarity and is known to fail
badly near the chiral limit.

The principal technical difficulty in lattice QCD simulations derives from the fact that
the quarks are fermions. At present their effects can only be taken into account using a
pseudo-fermion representation such as

(2) det D ∝
∫

φ

exp
{
−(φ, (D†D)−1/2φ)

}

of the determinant of the Dirac operator D. The field φ integrated over in this formula is
a Dirac field with complex rather than anti-commuting components and is therefore re-
ferred to as pseudo-fermion field. No approximation is made at this point, and the integral
(2) is accessible to standard importance sampling algorithms, but the pseudo-fermions
add a large amount of statistical noise to the theory that slows down the simulations to
the extent of making them practically infeasible at small quark masses.

In 2001 Hasenbusch [7] suggested to separate the high modes of the Dirac operator
by factorizing the quark determinant according to

(3) det D = det Dhigh × det(D/Dhigh)

and to use an independent pseudo-fermion field for each factor of the determinant. While
more noise is added to the system in this way, the net effect of the factorization is a sig-
nificant damping of the random fluctuations of the forces that drive the simulation.
An acceleration of the simulation was thus achieved, but further ideas and a few years of
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Fig. 4. – Typical shape of the low end of the spectral density of the Wilson-Dirac operator in
QCD with a doublet of quarks of mass m [11]. The tail at eigenvalues smaller than m is a lattice
artifact that disappears in the continuum limit. At fixed lattice spacing and small masses, the
tail may however extend to zero, in which case accidental zero modes may occur.

algorithm development were still required until the quenched approximation was even-
tually overcome [8,9].

Roberto was enthusiastic about this important progress, and together with Luigi Del
Debbio, Leonardo Giusti and Nazario Tantalo (who was then a PhD student of Roberto)
we decided to perform some significant simulations of QCD with a doublet of light quarks.
In view of its simplicity and conceptual clarity, we agreed to use the formulation of lattice
QCD introduced by Wilson in 1974 [10]. Before 2004 Wilson’s formulation was however
considered to be a particularly difficult case for numerical simulations, because chiral
symmetry is only preserved up to lattice effects. The Wilson-Dirac operator is therefore
not protected from having accidental zero modes, and while these cancel in the functional
integral, they can trigger instabilities in the simulations (see fig. 4).

The issue thus had to be addressed first and it turned out that the width σ of the
tail of the spectral density plotted in fig. 4 is approximately related to the spacing a and
volume V of the lattice through [11]

(4) σ � a√
V

.

Apart from the expected suppression of the tail in the continuum limit, the formula
reveals that the low end of the spectrum also becomes sharper when the lattice volume
increases. Some further investigation then showed that stability on lattices of size 2L×L3

is guaranteed provided a, L and the pion mass Mπ are in the range

(5) a ≤ 0.1 fm, L ≥ 2 fm, MπL ≥ 3.

In practice these bounds should anyway be satisfied if the lattice and finite-volume effects
are to be small.

We could then safely proceed with the QCD simulations we had planned to do. The
simulation algorithm we used was based on a factorization (3) of the quark determinant
with

(6) Dhigh =
∑

blocks Λ

DΛ,
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Fig. 5. – Sketch of a decomposition of the lattice into disjoint rectangular blocks Λ. In the sim-
ulations the blocks are usually taken to be fairly small in physical units [(0.5 fm)4, for example]
so that DΛ has a spectral gap of 1 GeV or so.

where the lattice is divided into blocks Λ of points, as in fig. 5, and DΛ denotes the Dirac
operator on Λ with Dirichlet boundary conditions [8]. With respect to the algorithms that
did not include a mode separation, the DD-HMC algorithm (as it was called) achieved
an improved scaling behaviour as a function of the lattice spacing a and the quark mass
m [12]. Moreover, it turned out to be much more efficient already at fairly coarse spacing
and large mass (by roughly two orders of magnitude at a = 0.1 fm and m = 20 MeV, for
example).

Apart from mastering the technical difficulties in these simulations, our aim was to
study the behaviour of two-flavour QCD at small quark masses and, if possible, to make
contact with chiral perturbation theory. In a series of two papers entitled “QCD with light
Wilson quarks on fine lattices” many interesting results were obtained [12]. Particularly
impressive was a plot showing the dependence of the square of the pion mass on the quark
mass (see fig. 6). Leading-order chiral perturbation theory predicts a linear dependence,
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Fig. 6. – Dependence of the square of the pion mass Mπ on the quark mass m at fixed lattice
spacing [12]. Both masses are given in units of some reference masses so that the points obtained
at different spacings a must lie on the same curve up to lattice effects. The data points shown
range from Mπ � 377 MeV up to Mπ � 830 MeV in the plot on the left and up to Mπ � 500 MeV
in the scaled figure on the right.



A JOURNEY WITH ROBERTO IN LATTICE QCD 7

but the fact that the deviations from this asymptotic behaviour remain small up to well
above the kaon mass came as a surprise. Moreover, the lattice effects turned out to be
fairly small in this figure, which did not have to be so either, given that chiral symmetry
is violated by terms of order a in the (unimproved) Wilson formulation of lattice QCD.

Since these calculations were completed, steady progress has been made in lattice
QCD and simulations at quark masses down to the physical point have become possi-
ble [13]. The Wilson formulation is widely used, but now usually includes the coun-
terterms required to cancel the leading lattice effects (i.e. the ones proportional to a).
A theoretical reason for the surprisingly linear dependence of M2

π on the quark mass in
two-flavour QCD however awaits to be found.

5. – Working with Roberto

The research work Roberto was interested in usually had to include some new physics
ideas or at least be technically innovative. He very much appreciated discussions at the
blackboard, particularly in the phase where a project was in the process of being defined
and many things were still unclear.

Roberto had a profound knowledge of field theory and the phenomenology of elemen-
tary particles. Collaborating with him was inspiring and not complicated. In April 2013,
when I spent a few days at Tor Vergata to give a talk on the Yang-Mills gradient flow,
Roberto got immediately interested in the subject and started to speculate on the pos-
sible use of the flow for computations of the nucleon structure functions. The discussion
then went on and it quickly became clear that electroweak transition matrix elements are
likely to be a promising field of application too. What happened in these days describes
well how we interacted many times and the generosity with which Roberto shared his
insights and ideas.
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