Colloquia: IFAE 2017

Measurement of B^0 , B^0_s , B^+ and Λ^0_b production asymmetries in 7 and 8 TeV pp collisions at LHCb

F. $\text{Ferrari}^{(1)}(^{2})(^{*})$

⁽¹⁾ INFN, Sezione di Bologna - Bologna, Italy

⁽²⁾ Dipartimento di Fisica e Astronomia, Università di Bologna - Bologna, Italy

received 21 April 2018

Summary. — The B^0 , B^0_s , B^+ and Λ^0_b hadron production asymmetries are measured using a data sample corresponding to an integrated luminosity of $3.0 \,\mathrm{fb}^{-1}$, collected by the LHCb experiment in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The measurements are performed as a function of transverse momentum and rapidity of the *b* hadrons within the LHCb detector acceptance. The overall production asymmetries, integrated over transverse momentum and rapidity, are also determined.

1. – Introduction

The production rates of b and \overline{b} quarks in pp collisions are not explected to be equal. This phenomenon, commonly reffered to as production asymmetry, is due to the fact that \overline{b} (b) quarks produced in the hard scattering might combine with the spectators quarks from the pp collision in order to form a meson (baryon), whereas the opposite is not possible. Models describing these production effects predict values of the asymmetries up to a few percent and an enchancement at high rapidities and small transverse momenta [1, 2]. The knowledge of these asymmetries plays a key role in CP violation measurements, since one needs to correct for production effects in order to obtain the physical asymmetries. The b hadrons production asymmetries are defined as

(1)
$$A_{\mathrm{P}}(x) = \frac{\sigma(\overline{x}) - \sigma(x)}{\sigma(\overline{x}) + \sigma(x)}, \quad x \in \{B^0, B^0_s, B^+, \overline{\Lambda}^0_b\},$$

where σ denotes the inclusive production cross-section in a certain region of phase space.

2. – Analysis

The B_s^0 and B^0 production asymmetries are measured using $B_s^0 \to D_s^-(K^+K^-\pi^-)\pi^+$ and $B^0 \to J/\psi(\mu^+\mu^-)K^{*0}(K^+\pi^-)$ decays. Two-dimensional simultaneous invariant

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

^(*) E-mail: Fabio.Ferrari@bo.infn.it

mass and decay time fits in $(p_{\rm T}, y)$ bins of the *B* mesons are performed in order to measure the quantity

(2)
$$A(t) = A_{\rm CP}(f) + A_{\rm D}(f) + \omega(t)A_{\rm P},$$

where $\omega(t) \equiv [\cos(\Delta m_{d(s)}t)]/[\cosh(\Delta \Gamma_{d(s)}t/2)]$, $A_{\rm CP}(f)$ is the physical asymmetry and $A_{\rm D}(f)$ is the detection asymmetry of the final state f. The production asymmetry is then measured as the amplitude of the oscillating term $\omega(t)$.

The B^+ production asymmetry is measured by means of $B^+ \to J/\psi(\mu^+\mu^-)K^+$ decays. Invariant mass fits in (p_T, y) bins of the B^+ meson are performed to measure the raw asymmetry, $A_{\text{raw}}(B^+)$. $A_{\text{P}}(B^+)$ can be measured as

(3)
$$A_{\rm P}(B^+) = A_{\rm raw}(B^+) - A_{\rm CP}(B^+ \to J/\psi K^+) - A_{\rm D}(K^-),$$

where $A_{\rm CP}(B^+ \to J/\psi K^+)$ is taken as an external input [3] and $A_{\rm D}(K^-)$ is measured by means of $D^+ \to K^- \pi^+ \pi^+$ and $D^+ \to K^0_S \pi^+$ decays.

Finally, the Λ_b^0 production asymmetry is obtained exploiting the fact that b and \overline{b} quarks are produced in pairs through the relation

(4)
$$A_{\rm P}(\Lambda_b^0) = -\left[\frac{f_u}{f_{\Lambda_b^0}}A_{\rm P}(B^+) + \frac{f_d}{f_{\Lambda_b^0}}A_{\rm P}(B^0) + \frac{f_s}{f_{\Lambda_b^0}}A_{\rm P}(B_s^0)\right],$$

where f_u , f_d , f_s and $f_{\Lambda_b^0}$ are the B^+ , B^0 , B_s^0 and Λ_b^0 hadronization fractions, where the B_c^+ and Ξ_b contributions have been considered as systematic uncertainties.

3. – Results and conclusions

The b hadrons production asymmetries within the LHCb acceptance are found to be

$A_{\rm P}(B^0)_{7{\rm TeV}} = (+0.44 \pm 0.88 \pm 0.11)\%,$	$A_{\rm P}(B^0)_{8{\rm TeV}} = (-1.40 \pm 0.55 \pm 0.10)\%,$
$A_{\rm P}(B_s^0)_{7{\rm TeV}} = (-0.65 \pm 2.88 \pm 0.59)\%,$	$A_{\rm P}(B_s^0)_{8{\rm TeV}} = (+1.98 \pm 1.90 \pm 0.59)\%,$
$A_{\rm P}(B^+)_{7{\rm TeV}} = (-0.23 \pm 0.24 \pm 0.37)\%,$	$A_{\rm P}(B^+)_{8{\rm TeV}} = (-0.74 \pm 0.15 \pm 0.32)\%,$
$A_{\rm P}(\Lambda_b^0)_{7{\rm TeV}} = (-0.11 \pm 2.53 \pm 1.08)\%,$	$A_{\rm P}(\Lambda_b^0)_{8{\rm TeV}} = (+3.44 \pm 1.61 \pm 0.76)\%,$

where the first error is statistical and the second is systematic. All the results are found to be compatible with zero and no evidence of a dependence of the production asymmetries on the *b* hadrons $p_{\rm T}$ or *y* is observed. The production asymmetries are also measured in bins of $p_{\rm T}$ and *y* of the *b* hadrons, as reported in ref. [4].

REFERENCES

- SJÖSTRAND T., MRENNA S. and SKANDS P., Comput. Phys. Commun., 178 (2008) 852, arXiv:0710.3820.
- [2] BAHR M. et al., Eur. Phys. J. C, 58 (2008) 639, arXiv:0803.0883.
- [3] LHCb COLLABORATION (AAIJ R. et al.), Phys. Rev. D, 95 (2017) 052005.
- [4] LHCb COLLABORATION (AAIJ R. et al.), Measurement of B^0 , B_s^0 , B^+ and Λ_b^0 production asymmetries in 7 and 8 TeV proton-proton collisions, arXiv:1703.08464 (2017).