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Summary. — We discuss the structural and dynamical properties of a colloidal
glass of silica nanoparticles in a water-lutidine mixture probed using photon corre-
lation techniques. We describe the small angle set-up used to perform X-ray photon
correlation spectroscopy (XPCS) experiments and the procedure followed to mea-
sure the volume fraction of the sample. We describe the structure of the glass using
a short range potential model and a theoretical structure factor within the mean
spherical approximation. The dynamics finally is characterized by a Gaussian-like
intermediate scattering function which is not compatible with the classical picture
of an heterogeneous diffusive process.

1. – Introduction

Colloidal systems have been investigated deeply in the last few decades. Nowadays
nanoparticles (NP) are arousing interest due to the wealth of possibilities that they
are manifesting. Gold and synthetic NP for gene and drug delivery, noble metals NP
functionalized with DNA to build complex nanostructures, quantum dots and catalists
are only few examples [1-3].

In this article we discuss the structural and dynamical properties of a concentrated
suspension (volume fraction φ = (42±2)%) of silica nanoparticles in a water-2,6 lutidine
((CH3)3C5H3N) mixture (0.25 lutidine mass fraction). The water-lutidine solution has
a coexistence curve of the two liquid phases with a lower critical point near the mass
fraction ∼ 0.3 of lutidine in water and a critical temperature of 34 ◦C [4]. This binary
mixture exhibits an uncommon feature when it is placed in contact with silica surfaces:
a so-called wetting transition takes place, that is the lutidine separates from water and
covers silica surfaces with a layer thickness that depends on the temperature of the
system [5]. This layer weakens the repulsive electrostatic interaction between the colloids
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and induces aggregation in diluted solutions of silica nanoparticles in near critical water-
lutidine mixtures [6, 7].

It was observed using photon correlation techniques that high volume fraction sus-
pensions do not show a temperature induced aggregation but a glass-glass transition
between a repulsive and an attractive glass [8].

We report here a detailed study of a colloidal repulsive glass of 100 nm diameter SiO2

particles in a water-2,6 lutidine mixture (0.25 lutidine mass fraction) at the packing
fraction φ = (42 ± 2)% and at the temperature T = (32.00 ± 0.01) ◦C.

2. – Experimental details

2.1. Photon correlation. – Photon correlation is a well-known technique [9]. In the so-
called homodyne configuration one performs the autocorrelation of the scattered intensity
at a given scattering vector q:

(1) g2(q, τ) :=
〈I(q, t)I(q, t + τ)〉t

〈I(q, t)〉t2
= 1 + α|F (q, τ)|2,

where 〈...〉t is a temporal average, α is the contrast and F (q, τ) is the intermediate
scattering function. The last equality is known as the Siegert relation, valid in the
Gaussian approximation [9]. Since the intermediate scattering function is the Fourier
transform of the Van-Hove self–space-time correlation function, a photon correlation
experiment gives direct information on the dynamical properties. In most of the cases,
the intermediate scattering function can be modelled as a modified exponential function
(KWW function) [10]:

(2) F (q, τ) ∝ e(−Γτ)β

,

where β is known as stretching parameter and Γ−1 is the decay time.
It is clear that in order to obtain a reliable autocorrelation function, one needs to

integrate for a time much longer than the typical decorrelation time of the intermediate
scattering function. However, in glassy-like systems this time could exceed hundreds
of seconds, causing difficulties in the use of this technique. To overcome the related
statistical limitations the so-called multispeckle approach has been developed [11]. With
the use of a 2D detector, one can perform an average over the pixels related to the same
exchanged wave vector q, reducing the needed integration time of a factor equal to the
number of speckles which are taken into the average.

2.2. Experimental set-up. – We carried out an X-Ray photon correlation experiment
in small angle geometry (XPCS-SAXS) at the coherent station of the ID10 beamline at
the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).

Synchrotrons are basically incoherent sources of X-rays. The way to get a partially
coherent beam is to use slits, pinholes and monochromators. Indeed transverse and
longitudinal coherence lengths at a distance R from the source can be defined as [12]:

(3) ξt �
λR

2Σ
, ξl �

λ2

Δλ
,

where λ and Δλ
λ are, respectively, the wavelength and the relative bandwidth of the beam

and Σ is the source size.
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Fig. 1. – Scheme of the experimental set-up for small angle coherent X-ray scattering. The
scattered intensity is collected with the Maxipix (2D single-photon counterdetector) [14].

With a Si(111) monochromator one is able to achieve an energy resolution Δλ
λ =

1.4×10−4, which corresponds to ξl � 1 μm at E = 8.1 keV. With regard to the transverse
coherence, at a given energy the decisive factor is the ratio R

Σ . For this reason, the
sample is kept far (R ∼ 50m) from the source and with a combination of lenses and slits
a coherent beam of 10 × 10 μm2 size is obtained [13].

In fig. 1 the scheme of the experimental set-up is reported. In order to perform a
coherent scattering experiment the sample volume must be illuminated coherently. For
this reason, the path-length difference (PLD) for rays in the scattering volume cannot
exceed the longitudinal coherence ξl. The PLD can be written as [12]

(4) PLD � 2W sin2 θ

2
+ d sin θ,

where W is the thickness of the sample, θ is the scattering angle as reported in fig. 1 and
d is the beam diameter. A sample thickness W = 500 μm was chosen for the experiment,
which fulfils the requirements of eq. (4) for the whole detector surface.

It can be shown [9] that the maximum contrast in the autocorrelation function is
achieved when at most one speckle impinges on the detector. Since the multispeckle
technique is used to increase the statistical accuracy, the best performance is obtained
with speckles of the same size as the pixel (55 × 55 μm2). The speckle linear size can be
estimated as

(5) lc ∼ λ

Ω
� 1.22 · λD

d
,

where λ is the wavelength of the incident beam, Ω is the angle of the source subtended at
the detector, D is the source-detector distance, d is the beam diameter and the term 1.22
is introduced to take into account the cylindrical symmetry of the scattering volume. A
distance D = (5.22 ± 0.01)m was used in the experiment, which implies speckles with a
linear size of ∼ 100 μm.
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2.3. Sample preparation. – The samples were prepared from a diluted suspension
of silica Sicastar R©(Micromod) nanoparticles (100 nm diameter, mass concentration
100 mg/mL of solution). The right amount of 2,6-lutidine (Sigma-Aldrich R©) was added
to the solution to reach a lutidine-water mass fraction Clw = 0.25. The obtained sus-
pension was then centrifuged and the exceeding solvent removed to obtain the desired
volume fraction of silica with respect to the solution. The sample was then shaken on
a vortex mixer to get a homogeneous suspension and filled into Mark-tubes capillaries
made of borosilicate glass (Hilgenberg R©) of outer diameter 0.5 mm and wall thickness
0.01 mm and placed in a ultrasonic bath for 1 minute to remove air bubbles.

3. – Measuring the volume fraction

In order to obtain high volume fractions (φ ∼ 40%) most of the solvent has to be
removed. Since the particles diffuse into the solution after centrifugation, it is difficult
to estimate the exact final volume fraction of the colloidal system. It is then worth to
perform a direct measurement of the volume fraction.

The transmitted part of an X-ray beam through a sample of thickness x can be
modelled as [15]

(6) I = T · I0 = I0e
−μx,

where I and I0 are, respectively, the transmitted and incident beams, T is the transmis-
sion coefficient and μ is the attenuation coefficient of the sample. In the case of a colloidal
suspension, one can model it with μ = (1−φ)μs +φμp, where φ is the volume fraction, μs

is the attenuation coefficient of the solvent and μp is the one relative to the particles. To
take into account the thickness of the walls of the capillary, the transmission coefficient T
is divided by the one obtained for an empty borosilicate capillary (Tempty = 0.83±0.02).
Finally, the volume fraction can be calculated as

(7) φ =
− log( T

Tempty
) 1

ξ − (CL · μL + (1 − CL) · μW )

μSiO2 − (CL · μL + (1 − CL) · μW )
,

where CL is the mass fraction of lutidine in the solvent, μL and μW are the absorption
coefficients for lutidine and water, respectively, and ξ is the inner diameter of the capillary.

An intensity profile (fig. 2) is obtained scanning the sample across the beam while
measuring the intensity on the 2D detector. The points outer of the capillary are fitted
with a linear law while the bottom of the capillary is fitted with a third power polynomial
function.

4. – Structural properties

The experimental scattered intensity is extracted from the images with the following
procedure. For each image, dead pixels are masked and the intensity integrated az-
imuthally (ϕ) over rings of width Δr centred on the transmitted beam (fig. 1). Then 100
of these spectra (corrected for the subtended solid angle) are averaged to get a standard
deviation for each point I(q).

In the kinetic approximation the scattered intensity is

(8) I(
q ) ∝ |f(
q )|2S(
q ),
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Fig. 2. – Example of intensity profile obtained for a volume fraction of φ = (42 ± 2)%. To
get a reliable value of I0 the data corresponding to the transmission out of the sample (�) are
fitted with a linear law; those corresponding to the bottom of the capillary (×) are fitted with
a third power polynomial function. To get a correct estimate of the diameter of the capillary,
the half-maximum width is extracted using a linear interpolation.

where |f(
q )|2 is the form factor and S(
q ) is the structure factor.

4.1. Form factor . – The form factor |f(
q )|2 is nothing but the Fourier transform of
the charge density. In the case of colloidal suspensions the form factor is described in
terms of the relative density ρ = ρp −ρs, where ρp is the charge density of the suspended
particles and ρs is the charge density of the solvent.

The form factor of a sphere is [16]

(9) |f(|
q |)|2 =
∣∣∣∣ρ4

3
πR3 [sin(qR) − qR cos(qR)]

(qR)3

∣∣∣∣
2

,

where R is the radius of the sphere and q the exchanged wave vector. It is important to
stress the fact that for symmetry reasons, |f(
q )|2 = |f(|
q |)|2.

Since the particles are not monodispersed one has to consider the contribution in the
form factor due to different particle’s radii. The particle size distribution is modelled
with the Schultz distribution

(10) fz(R) =
1
z!

[z + 1/r̄]z+1rz exp−(z + 1)r/r̄

with r̄ the average particle radius and z a parameter that is related to the second moment
of the distribution, i.e. 〈R2〉 − 〈R〉2 = r̄2/(z + 1). For this particular distribution an



6 A. MARTINELLI et al.

Fig. 3. – (a) Experimental form factor after background subtraction (◦) and best fit (dashed
line) performed using a Levenberg-Marquardt nonlinear least-squares algorithm. The obtained

parameters are 〈R〉 = (51±1) nm and
p

〈R2〉 − 〈R〉2/〈R〉 = (8±1)% (b) Background measured
with a capillary and the solvent.

analytic function exists to model the form factor [17].
In fig. 3 the experimental form factor is reported after background subtraction. The

fitting function is the form factor for polydispersed spheres convoluted with the width of
the rings used for the calculation of the experimental intensity.

4.2. Structure factor . – The structure factor is strictly related to the correlation func-
tion between particles. Indeed it comes out in the scattered intensity as the interference
of the scattered field from different particles. Thanks to this, one can recover structural
information such as the pair correlation function (g(r)) and the interaction potential. A
complete treatment can be found in dedicated books [18] and here only few fundamental
results are reported.

The structure factor for an isotropic homogeneous system can be written as

(11) S(q) − 1 = n0

∫
dr4πr2 sin qr

qr
[h(r)]

with n0 the average particle density and h(r) the total correlation function function
defined as g(r) − 1. The Ornstein-Zernike equation [19] expresses the total correlation
function in terms of the direct correlation function ĉ(q):

(12) ĥ(q) =
ĉ(q)

1 − ρĉ(q)
.
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Fig. 4. – Experimental structure factor (◦) and the best fit (dashed line) with eq. (14).

The function ĉ(q) is the correlation between particles 1 and 2 only due to the direct
interaction between the two particles. Following the idea of the DLVO theory [20,21], the
interaction potential between the colloids is modelled with a long-range van der Waals
attraction (neglected in the present case) and a short-range electrostatic repulsion:

(13) U(r) =

⎧⎨
⎩

∞, if r < σ,

πε0ε σ2Ψ0
2 e−k(r−σ)

r
, if r > σ,

with σ the diameter of the particles, r the relative distance, Ψ0 the surface potential and
k the inverse of the screening length.

It is possible to solve analytically eq. (12) within the mean spherical approxima-
tion [22,23]:

(14)

⎧⎨
⎩

h(x) = −1, if x < 1,

c(x) = −βU(x) = −γ
e−k′x

x
, if x > 1,

where x = r/σ and γ = βπεε0σΨ0
2ek with β the Boltzmann factor 1/kBT . The to-

tal dielectric constant ε is calculated linearly combining the ones relative to water and
lutidine.

In fig. 4 the experimental structure factor is reported together with the best fit.
The parameters of the fitting function [23] are the volume fraction φ, the inverse of the
reduced screening length k′ = kσ and the surface potential Ψ0. The obtained parameters
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Fig. 5. – Autocorrelation function (◦) calculated on the peak of the structure factor (q =
0.07 nm−1) and the best fit (dashed line) using eq. (1) and eq. (2). The obtained parameters
are Γ−1 = (72 ± 1) s and β = (2.0 ± 0.1).

with a non-linear fit (Levenberg-Marquardt least-squares algorithm) are k′ = 2.5 ± 0.1,
Ψ0 = (15.7 ± 0.5)mV and φ = 0.41 ± 0.01. This last value is in agreement with the one
obtained with the transmission measurements (φ = 0.42 ± 0.02).

5. – Dynamical properties

It is well established that near the glass transition the stretching parameter (β) of the
KWW function is usually smaller than 1. This behaviour is attributed to a distribution
of simple exponential relaxation processes [24,25].

In fig. 5 the autocorrelation function is reported, calculated at the peak of the struc-
ture factor (q = 0.07 nm−1) with the multispeckle approach. The value obtained from
the fit for the stretching parameter is β = (2.0 ± 0.1). A compressed (β > 1) behaviour
cannot be explained with a superposition of simple exponentials. This peculiar decay
is observed in colloidal systems [26] and in metal glasses [27] where it is attributed to
the presence of internal stresses. Simulations on colloidal gels have recently shown that
the intermittent microscopic dynamics (rearrangement of the gel connections) leads to a
faster than exponential relaxation process and a super-diffusive particle dynamics [28,29].
A clear understanding of this phenomenon remains however a topic of current research.
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6. – Conclusions

We have characterized a colloidal glass of silica nanoparticles in a water-lutidine by-
nary mixture. We have modelled the interaction potential with a short-range screened
Coulombic repulsion. The calculated structure factor in the mean spherical approxima-
tion is in agreement with the experimental data. From a dynamical point of view, we
have observed a compressed behaviour of the intermediate scattering function. Despite
this feature is common in soft matter systems, the process beyond it is still argument of
debate and it is not fully clarified.
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