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Summary. — The precision measurement of the anomalous magnetic moment g−2
of the muon presently exhibits a 3.5 σ deviation between theory and experiments.
In the next few years the anomalous magnetic moment will be measured to higher
precisions at Fermilab and J-PARC. The theoretical prediction can be improved by
reducing the uncertainty on the leading hadronic correction aHLO

μ to the g−2. Here

we present a new approach to determine aHLO
μ with space-like data, by means of a

precise measurement of the hadronic contribution to the effective electromagnetic
coupling α, exploiting the elastic scattering of 150GeV muons (currently available at
CERN North area) on atomic electrons of a low-Z target. The direct measurement
of aHLO

μ in the space-like region will provide a new independent determination and
will consolidate the theoretical prediction of the muon g− 2 in the Standard Model.
It will allow, therefore, a firmer interpretation of the measurements of the future
muon g − 2 experiments at Fermilab and J-PARC.

The discrepancy between the experimental value of the muon anomalous magnetic
moment aμ = (g−2)/2 and the Standard Model (SM) prediction, Δaμ ∼ (28±8)×10−10

is a long-standing issue in particle physics [1,2]. The current accuracy of the SM predic-
tions, ∼ 5×10−10, is limited by strong interaction effects, at the low energy scale implied.
However, by using analyticity and unitarity, it was shown [3] that the leading-order
(LO) hadronic contribution to the muon g-2, aHLO

μ , can be computed via a dispersion
integral of the hadron production cross-section in e+e− annihilation at low-energy. The
present error on aHLO

μ , ∼ 4 × 10−10 or slightly better, with a relative accuracy of 0.6%,
constitutes the main uncertainty of the SM prediction [2]. Alternative evaluations of
aHLO

μ can be obtained with QCD lattice calculations [4]. The current lattice QCD results
are not yet competitive with the dispersive approach via time-like data, with errors that
are expected to decrease significantly in the next few years [5]. The O(α3) hadronic
light-by-light contribution, aHLbL

μ , which has the second largest error in the theoretical
evaluation, contributing with an uncertainty of (2.5–4)×10−10, cannot at present be
determined from data and its calculation relies on the use of specific models [6-8].

The error achieved by the BNL E821 experiment [9], δaExp
μ = 6.3×10−10 , correspond-

ing to 0.54 ppm, is dominated by the available statistics. New experiments at Fermilab
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and J-PARC, aiming at measuring the muon g-2 to a precision of 1.6×10−10 (0.14 ppm),
are in preparation [10,11].

Together with the experimental plans, an improvement on the value of the LO
hadronic contribution is highly desirable. The proposal described here is to determine
aHLO

μ from a measurement of the effective electromagnetic coupling α in the space-like
region, where the vacuum polarization is expected to be a smooth function of the squared
momentum transfer. In this approach the hadronic contribution to the running of α can
be measured by means of the t-channel μ-e elastic scattering process, from which aHLO

μ

can be determined directly [12] (1).

1. – Measuring the hadronic leading contribution with space-like data

For the calculation of the hadronic leading contribution aHLO
μ with the t-channel

approach an alternative formula to the dispersion integral [3,16] can be exploited [13,17],
namely

(1) aHLO
μ =

α

π

∫ 1

0

dx (1 − x)Δαhad[t(x)] ,

where Δαhad(t) is the hadronic contribution to the running of the fine-structure constant,
evaluated at

(2) t(x) =
x2m2

μ

x − 1
< 0,

that is the space-like (negative) squared four-momentum transfer of the process. In
contrast with the dispersive integral, the integrand of eq. (1) is a smooth function and
free of resonance poles. Figure 1 (left) shows Δαhad, and for comparison Δαlep, as a
function of the variables x and t. The range x ∈ (0, 1) corresponds to t ∈ (−∞, 0),
with x = 0 for t = 0. The expected integrand of eq. (1), calculated with the routine
hadr5n12 [18], which uses time-like hadroproduction data and perturbative QCD, is
plotted in fig. 1 (right). The peak of the integrand occurs at xpeak � 0.914 (corresponding
to tpeak � −0.108GeV2) and Δαhad(tpeak) � 7.86 × 10−4 (see fig. 1 (right)).

We propose to use eq. (1) to determine aHLO
μ by measuring the running of α using

the CERN muon beam of energy Eμ = 150GeV, colliding on electrons at rest of a fixed
target. This technique is similar to the one used for the measurement of the pion form
factor, as described in [19].
It looks very appealing for the following reasons:

• It is a t-channel process, making the dependence on t of the differential cross-section
proportional to |α(t)/α(0)|2:

(3)
dσ

dt
=

dσ0

dt

∣∣∣∣ α(t)
α(0)

∣∣∣∣
2

,

(1) The method has been originally proposed [13] by using Bhabha scattering data. A method
to determine the running of α by using small-angle Bhabha scattering was proposed in [14] and
applied to LEP data in [15].
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Fig. 1. – Left: Δαhad[t(x)]×104 (red) and, for comparison, Δαlep[t(x)]×104 (blue), as a function
of x and t (upper scale). Right: the integrand (1−x)Δαhad[t(x)]× 105 as a function of x and t.
The peak value is at xpeak � 0.914, corresponding to tpeak � −0.108 GeV2.

where dσ0/dt is the effective Born cross-section, including virtual and soft pho-
tons, analogously to ref. [20], where small-angle Bhabha scattering at high energy
was considered. The vacuum polarization effect, in the leading photon t-channel ex-
change, is incorporated in the running of α and gives rise to the factor |α(t)/α(0)|2.

• Given the incoming muon energy Eμ the t variable is related to the energy of the
scattered electron E′

e or its angle θe through

t = (pμ − p′μ)2 = (pe − p′e)
2 = 2m2

e − 2meE
′
e,(4)

s = (p′μ + p′e)
2 = (pμ + pe)2 = m2

μ + m2
e + 2meEμ,(5)

E′
e = me

1 + r2 cos2 θe

1 − r2 cos2 θe
, θe = arccos

(
1
r

√
E′

e − me

E′
e + me

)
,(6)

where the angle θe spans the range (0–31.85) mrad for the electron energy E′
e in

the range (1–139.8) GeV.

• For Eμ = 150GeV, it turns out that s � 0.164GeV2 and −0.143GeV2 < t
< 0GeV2. It implies that the region of x extends up to 0.93, while the peak of
the integrand function of eq. (1) is at xpeak = 0.914, corresponding to an electron
scattering angle of 1.5 mrad, as visible in fig. 1 (right).

• The angles of the scattered electron and muon are correlated as shown in the fig. 2,
drawn for incoming muon energy of 150 GeV. This constraint is extremely impor-
tant to select elastic scattering events, rejecting background events from radiative
or inelastic processes and to minimize systematic effects in the determination of t.
Note that for scattering angles of (2–3) mrad there is an ambiguity between the out-
going electron and muon, as their angles and momenta are similar, to be resolved
by means of μ/e discrimination.



4 F. PICCININI and U. MARCONI

Electron scattering angle (mrad)
0 10 20 30 40 50

M
uo

n 
sc

at
te

rin
g 

an
gl

e 
(m

ra
d)

0

1

2

3

4

5 Muon beam momentum  = 150 GeV

 =  0.5 GeV

e

x =  0.2, E
 =  1.4 GeV

e

x =  0.3, E
 =  2.9 GeV

e

x =  0.4, E
 =  5.5 GeV

e

x =  0.5, E
 =  9.8 GeV

e

x =  0.6, E

 = 17.8 GeV

e

x =  0.7, E

 = 35.0 GeV

e

x =  0.8, E

 = 88.5 GeV
ex =  0.9, E

 = 130.7 GeV
e

x = 0.928, E

x = 0.932
 = 139.5 GeVe E

Fig. 2. – The relation between the muon and electron scattering angles for 150GeV incident
muon beam momentum. Blue triangles indicate reference values of Feynman’s x and electron
energy.

• The boosted kinematics allows the same detector to cover the whole acceptance.
Many systematic errors, e.g., on the efficiency, will cancel out (at least at first
order) in the relative ratios of event counts in the high- and low-q2 regions (signal
and normalization regions).

Assuming to use a muon beam of 150 GeV with an average intensity of ∼ 1.3 ×
107 muon/s, with a running time of 2 × 107 s/yr, and using 30 experimental points in x
(supplemented with large |t| contributions that can be derived from pQCD), we estimate
the statistical sensitivity of this experiment on the value of aHLO

μ to be ∼ 0.3%. Such a
beam is available at the CERN North Area.

2. – Detection technique

The CERN muon beam M2 presents ideal characteristics to perform for the mea-
surement. The beam intensity, of more than 107 muon/s, can provide the required event
yield and its time structure allows to tag the incident muon. The target must be of low-Z
material, and the whole target thick (order of 60 cm) in order to get enough electron
scattering centres. The low-Z requirement is in order to minimize multiple scattering
and to have high radiation length. The idea is then to use a segmented target of 1 cm
thin layers, distributed in 60 identical modules. Each detection module has the size of
50 cm and consists of a thin target of Be (or C), coupled to three Si planes for tracking
(no magnetic field applied). Figure 3 shows the basic layout. Downstream the tracking
modules, as particle identifiers, we plan to use a calorimeter for the electrons. They
are required in order to solve the muon-electron ambiguity for electron scattering angles
around (2–3) mrad (cf. fig. 2). The preliminary studies of such an apparatus, performed
by using GEANT4, indicate an angular resolution of ∼ 0.02mrad for the outgoing par-
ticles. The detector acceptance covers both the region of the signal, with the electron
emitted at extremely forward angles and high energies, and the normalization region,
where the electron has much lower energy (around 1 GeV) and an emission angle of some
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Fig. 3. – Scheme of a possible detector layout. (a) The detector is a modular system. Each
module consists of a low-Z target (Be or C) and three silicon tracking stations within the distance
of 50 cm. (b) To perform the μ-e discrimination in the case of small scattering angles (with both
θμ and θe below 5 mrad) the detector is equipped with an electromagnetic calorimeter and a
muon detector.

tens of mrad. Due to the boosted kinematics of the collisions, the detector covers most of
the acceptance, and let all the scattering angles in the laboratory system to be accessed
by a single detector element.

3. – Considerations on systematic uncertainties

Significant contributions of the hadronic vacuum polarization to the μe → μe differ-
ential cross-section are essentially restricted to electron scattering angles below 10 mrad,
corresponding to electron energies above 10 GeV. The net effect of these contributions is
to increase the cross-section by a few per mille: a precise determination of aHLO

μ requires
not only high statistics, but also a high level of control of systematic uncertainties, both
on the theory as well as the experimental side, as the final goal of the experiment is
equivalent to a determination of the differential cross-section with ∼ 10 ppm systematic
uncertainty at the peak of the integrand function (cf. fig. 1).

3.1. Experimental systematic uncertainties. – A crucial requirement on the experi-
mental side is to keep the efficiency highly uniform over the entire q2 range, including
the normalization region, and over all the detector components. This motivates the
choice of a purely angular measurement: an acceptance of tens of mrad can be covered
with a single sensor of modern silicon detectors, positioned at a distance of about one
meter from the target. It has to be stressed that particle identification (electromagnetic
calorimeter and muon filter) is necessary to solve the electron-muon ambiguity in the
region below 5 mrad. The wrong assignment probability can be measured with the data
by using the rate of muon-muon and electron-electron events.

Another requirement for reaching very high accuracy is to measure all the relevant
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contributions to systematic uncertainties from the data themselves. An important effect,
which distinguishes the normalization from the signal region, is multiple scattering, as the
electron energy in the normalization region is as low as 1 GeV. Multiple scattering breaks
the muon-electron two-body angular correlation, moving events out of the kinematic line
in the 2D plot of fig. 2. In addition, multiple scattering in general causes acoplanarity,
while two-body events are planar, within the resolution. These facts allow effects to be
modelled and measured by using data. An additional handle on multiple scattering could
be the inclusion of a thin layer in the apparatus, made of the same material as the main
target modules. This possibility will be studied in detail with simulation.

In high-precision experiments several systematic effects can be explored within the
experiment itself. In this respect the proposed modularity of the apparatus will help. A
test with a single module could provide a proof-of-concept of the proposed method.

3.2. Theoretical systematic uncertainties. – Since the final goal of the experiment is
a high-precision measurement of a differential cross-section, the latter has to be calcu-
lated with all the radiative corrections relevant at the scale of precision of 0.01% at
least. Such an accuracy has never been achieved in a collision experiment. The most
precise experiments has been conducted at leptonic colliders such as LEP and flavour
factories [21], where the theoretical precision at the level of 0.1% (or even better, as for
small-angle Bhabha scattering at LEP) was achieved. Previous quantitative considera-
tions of eq. (3) and eq. (6) are based on the QED leading-order (LO) expression of the
differential cross-section for μe → μe,

(7)
dσ

dt
=

4πα2

λ(s,m2
μ,m2

e)

[
(s − m2

μ − m2
e)

2

t2
+

s

t
+

1
2

]
.

The effect of running of α introduced in eq. (3) is obtained by resumming to all orders
the gauge-invariant subset of fermionic corrections at O(α). At the same next-to-leading
order (NLO), the class of QED corrections due to the insertion of a photon line, virtual
and real, contributes. These corrections are known in the literature for μe scattering [22]
but need to be implemented in a Monte Carlo event generator [23] tailored to simulate
the present energy and kinematics conditions, in order to design the optimal detector
configuration and the event selection for data analysis. The typical theoretical uncer-
tainty of a QED NLO calculation is of the order of 1%. The techniques to match NLO
fixed order calculation with all-orders resummed calculations of leading logarithmic con-
tributions are well known in QED [24] and allow to reach accuracies at the 0.1% level.
In order to go beyond this limit, the NNLO QED corrections are required. A first step
in this direction has been undertaken through the evaluation of the planar [25] and non-
planar [26] master integrals related to the two-loop photonic box diagrams of the virtual
QED corrections to the μe → μe process, in the approximation of massless electron.
With these results, all the building blocks for the complete photonic QED NNLO calcu-
lation are available. At two loop level, also fermionic one-loop insertions on top of QED
NLO diagrams have to be evaluated. Such contributions have already been evaluated
for Bhabha scattering [27]. The virtual contribution involves also the effect of hadronic
vacuum polarization, which requires a dedicated study [28]. The real pair emission is
also particularly important since one of the leptons of the additional pair can produce by
itself a signal track. The evaluation of such contributions requires, therefore, a detailed
Monte Carlo simulation with realistic geometric acceptance. Such kind of studies have
been performed already for LEP physics [29].
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Another class of contributions is given by the Z0 tree-level exchange diagram and
the full NLO corrections in the electroweak standard model. Even if they are expected
to be small, it is worth quantifying their size. These corrections have been calculated
in the literature [30]. A complete evaluation and Monte Carlo implementation is in
progress [23].

4. – Conclusions

The experiment MUonE presented to determine the leading hadronic contribution to
the muon g-2, by scattering high-energy muons on atomic electrons of a low-Z target
through the process μe → μe, is primarily based on a precise measurement of the scat-
tering angles of the two outgoing particles as the q2 of the muon-electron interaction
can be directly determined by the electron (or muon) scattering angle. An advantage
of the muon beam is the possibility of employing a modular apparatus, with the target
subdivided into subsequent layers. A low-Z solid target is preferred in order to provide
the required event rate, limiting at the same time the effect of multiple scattering as well
as of other types of muon interactions (pair production, bremsstrahlung and nuclear in-
teractions). The normalization of the cross-section is provided by the very same μe → μe
process in the low-q2 region, where the effect of the hadronic corrections on α(t) is neg-
ligible. Such a simple and robust technique has the potential to keep systematic effects
under control, aiming at reaching a systematic uncertainty of the same order as the sta-
tistical one. For this purpose a preliminary detector layout has been described. On the
theoretical side, the radiative corrections at NNLO accuracy have to be considered in full
detail and a Monte Carlo event generator able to match fixed order NNLO predictions
with resummation given by the Parton Shower technique is needed. By considering a
beam of 150 GeV muons with an average intensity of ∼ 1.3 × 107 muon/s, currently
available at the CERN North Area, a statistical uncertainty of ∼ 0.3% can be achieved
on aHLO

μ in two years of data taking. A test performed using a single detector module,
exploiting the muon beam facility, could provide a validation of the proposed method.
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