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Summary. — DANSS is a highly segmented 1 m?® plastic scintillator detector.
Its 2500 one meter long scintillator strips have a Gd-loaded reflective cover. The
DANSS detector is placed under an industrial 3.1 GWy, reactor of the Kalinin
Nuclear Power Plant 350 km NW from Moscow. The distance to the core is varied
on-line from 10.7 m to 12.7 m. Recent results on searches for a sterile neutrino are
presented as well as measurements of the antneutrino spectrum dependence on the
fuel composition. All results are preliminary.

1. — Introduction

The number of active neutrinos is limited to 3 by the measurements of the Z boson
decay width [1]. However, existence of additional sterile neutrinos is not excluded. Sev-
eral effects observed with about 3o significance level can be explained by active-sterile
neutrino oscillations. The GALEX and SAGE Gallium experiments performed calibra-
tions with radioactive sources and reported the ratio of numbers of observed to predicted
events of 0.88 £ 0.05 [2]. This deficit is the so called “Gallium anomaly” (GA). Mueller
et al. [3] made new estimates of the reactor 7, flux which are about 6% higher than
experimental measurements at small distances. This deficit is the so called “Reactor an-
tineutrino anomaly” (RAA). Both anomalies can be explained by active-sterile neutrino
oscillations at very short distances requiring a mass-squared difference of the order of
leV? [4].

The survival probability of a reactor 7. at short distances in the 4r mixing scenario
(3 active and 1 sterile neutrino) is described by a familiar expression

(1) 1-— sin22014 Sin2 ( 127Am%4 [eVz]L[m] )

E,[MeV]
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The existence of sterile neutrinos would manifest itself in distortions of the 7, energy
spectrum at short distances. At longer distances these distortions are smeared out and
only the rate is reduced by a factor of 1 — sin¥2014)/2. Measurements at only one
distance from a reactor core are not sufficient since the theoretical description of the 7,
energy distribution is considered not to be reliable enough. The most reliable way to
observe such distortions is to measure the 7, spectrum with the same detector at different
distances. In this case, the shape and normalization of the 7, spectrum as well as the
detector efficiency are canceled out. Detector positions should be changed frequently
enough in order to cancel out time variations of the detector and reactor parameters.
The DANSS experiment uses this strategy and measures . spectra at 3 distances from
the reactor core centre: 10.7m, 11.7m, and 12.7m to the detector centre. The detector
positions are changed typically 3 times a week. Antineutrinos are detected by means of
the Inverse Beta Decay (IBD) reaction

(2) Ve+p—et +n with E; = E.+ +1.80 MeV.

2. — The DANSS Detector

The DANSS detector was constructed by the ITEP-JINR Collaboration. It is de-
scribed elsewhere [5]. Here we mention only a few essential features. DANSS is installed
under the core of a 3.1 GWyy, industrial power reactor at the Kalinin Nuclear Power Plant
(KNPP) 350km NW of Moscow. The reactor materials provide a good shielding equiva-
lent to ~50 m of water, which removes the hadronic component of the cosmic background
and reduces the cosmic muon flux by a factor of 6. The size of the reactor core is quite
big (3.7m in height and 3.2 m in diameter) which leads to the smearing of the oscillation
pattern. This drawback is compensated by a high v, flux.

DANSS consists of 2500 polystyrene-based extruded scintillator strip (1 x4 x 100 cm?)
with a thin (~ 0.2 mm) Gd-containing surface coating. The amount of Gd in the detector
is 0.35%.,¢. The coating serves as a light reflector and a (n,~)-converter simultaneously.
The strips are arranged in 100 layers of 25 strips. The strips in the adjacent layers are
orthogonal. The detector is placed inside a composite shielding of copper (5 cm), borated
polyethylene (8cm), lead (5cm) and one more layer of borated polyethylene (8 cm). It
is surrounded on 5 sides (excluding bottom) by double layers of 3 cm thick scintillator
plates to veto cosmic muons.

Light from the strip is collected with three wavelength-shifting (WLS) Kuraray fibers
Y-11, @ 1.2mm, glued into grooves along the strip. The central fiber is read out with a
Silicon PhotMultiplier (SiPM) (MPPC S12825-050C(X)). The side fibers from 50 parallel
strips (a module 10 layers with 5 strips each) are read out with a compact photomultiplier
tube (PMT) (Hamamatsu R7600U-300). So that the whole detector (2500 strips) is a
structure of 50 intercrossing modules. All signals are digitized with specially designed
12 bit, 125 MHz FADCs [6]. Only PMTs, SiPMs, and front-end electronics are placed
inside the shielding but outside the Cu layer. SiPMs (PMTs) register about 18 (20)
photo-electrons (p.e.) per MeV. These numbers were obtained using measurements
with cosmic muons and artificially driven LEDs. So the total number is 38 p.e./ MeV.
Parameterized strip response non-uniformities have been incorporated into the GEANT4
(Version 4.10.4) MC simulation of the detector. The MC simulation included also a
spread in the light yields of different strips, dead channels, Poisson fluctuations in the
number of p.e. at the first 2 PMT dinodes, the excess noise factor for SiPMs due to
the optical cross-talk between pixels. The experimental energy resolution for cosmic
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Fig. 1. — Energy spectrum of the delayed signals measured with the 248Cm neutron source (left)
and detector response to the ®°*Co source (right).

muon signals in the scintillator strips is 15% worse than that from the MC calculation.
Therefore, the MC estimations are scaled up by the corresponding factor. After that,
the MC describes well the detector response for different radioactive sources.

Figure 1 (left) shows the energy distribution of neutron capture signals from a 248Cm
source placed at the center of the detector. Two peaks correspond to the neutron capture
by Gd and by protons. Fits of the high energy parts of the peaks give a resolution
compatible with the MC simulations. Figure 1 (right) shows the energy distribution of
signals from a ®*Co y-source placed in the center of the detector. The observed energy
resolution of & = 20.3% is consistent with the MC expectations. The same is true in
case of a 22Na source.

The SiPM gain calibration was performed using noise signals typically every 5 days.
Calibration with cosmic muons of all strips in the whole detector was also performed once
in ~ 5 days. A detailed description of the calibration procedure is presented elsewhere [7].
The strip response to the energy deposited by cosmic muons is linear within 0.7% in the
range (1.7-4.7) MeV. The energy measured by PMTs is proportional on average to
the energy, measured by SiPMs. Therefore, the PMT energy response is also linear.
Positrons with energies higher than 4.7 MeV typically deposit their energy in several
strips. Therefore, the detector response should be linear for high energies as well.

3. — Data taking and analysis

The trigger of the experiment is produced when the digital sum of all PMT signals is
above 0.7 MeV or the energy in the veto system is larger than 4 MeV. As a consequence,
the IBD process appears in the data as two distinct events, prompt and delayed. For
each trigger, waveforms for all SiPMs and PMTs are recorded in 512ns windows. The
visible energy of a positron cluster (continuous cluster of hits in the strips) is converted
using MC simulations into the deposited energy by taking into account average losses in
the inactive reflective layers of the strips and dead channels. Sometimes photons from
the positron annihilation produce signals in the strips attributed to the positron cluster.
This leads to an increase of the visible energy. Such a shift is also corrected on average
using MC simulations. A typical size of the total correction is ~ 2%. The next step is
a search for the time-correlated pairs of prompt-delayed events. We start with searching
for an event with more than 3.5 MeV energy deposit. This is a delayed event candidate
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Fig. 2. — Time between prompt and delayed signals (left) and positron energy distributions
measured at different detector positions (right); statistical errors only.

unless it has the muon veto. Then we look backward in time searching for a prompt event
with more than 1 MeV in the positron cluster and no muon veto. An IBD candidate pair
is considered found if the time difference between the prompt and delayed events is in
the range (2-50) us. For a valid pair we also require no event with the muon veto within
60 us before the prompt signal (within 200 us if E > 300 MeV is released in the main
detector). No other event should occur within 45 us before and 80 us after the prompt
event. The found pairs of prompt and delayed events form the experimental sample of
IBD candidates. Similar to the experimental sample, the accidental coincidence sample
is formed by looking for a prompt signal in 16 regions: 5, 10,...,80ms before the neutron
candidate. This sample provides us with a model-independent measure of the accidental
background. Distributions for IBD candidates, the accidental background and their
difference, which represents the IBD signal without accidental background are presented
in fig. 2 (left).

Several cuts are applied in order to reduce the accidental background, for example a
cut on the distance between positron and neutron candidates. These cuts are designed
to be very soft with respect to the signal in order to avoid any distortions. Only the
fiducial volume cut has a considerable inefficiency. The positron candidates are required
to be at least 4 cm away from all detector edges. All cuts were selected without looking
at the final results. They have been fixed after collection of about 10% of the data.

Positron energy spectra for 3 detector positions (top, middle, bottom) are shown in
fig. 2 (right)with statistical errors only. The corresponding numbers of events are 338244,
247753, and 324938. The IBD counting rate is 4910 events per day in the top position.
The positron energy does not include annihilation photons and hence is 1.02 MeV lower
than the usually used prompt energy. The muon-induced background (discussed below)
is subtracted. Three other reactors at the KNPP are 160 m, 334 m, and 478 m away from
the DANSS detector. The IBD counting rate from these reactors is 0.6% of the IBD
counting rate from the nearest reactor for the top detector position. This contribution is
taken into account by the corresponding reduction of the normalization of the obtained
spectra.

The energy spectrum of the background from neutrons produced by muons inside the
veto system is obtained from events with the muon veto. The amount of this background
is determined from a fit of the positron candidate energy spectrum during reactor off peri-
ods using the shape of the background determined from events with the muon veto. This
procedure reduces uncertainties in the background shape to a negligible level. A possible
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Fig. 3. — Ratio of positron energy spectra collected during the last 3 months of the reactor
campaign in 2017 and during the 2nd-4th months from the beginning of the next campaign
(statistical errors only). The average 239py fission fractions for these periods are 37.7% and
27.1% correspondingly. Stars are the Huber-Mueller model MC predictions.

small uncertainty in the background rate is taken into account during systematic error
studies. This is the most important background. It constitutes 2.7% of the IBD rate at
the top detector position.

The shape of the positron spectrum agrees roughly with the MC predictions based
on the 7, spectrum from [3,8]. However, a quantitative comparison requires additional
studies of calibration and systematic errors and improvements in the MC simulation of
the detector.

The shapes of the 7, spectra are different for 22U and 23?Pu isotopes. The fractions
of these isotopes change during a reactor campaign. The amount of 23°U decreases while
the amount of 239Pu increases with time. This leads to changes in the 7, spectrum first
observed in [9)].

Figure 3 shows the ratio of positron spectra collected during 3 months before the end
of the reactor campaign and during the 2-4 months after beginning of the campaign. The
corresponding fractions of 239Pu ssion fractions are 37.7% and 27.1% correspondingly.
We do not have reliable information about the corresponding fraction during the first
month after the start of the reactor campaign. The changes in the positron spectrum
are obvious. They are well described by the MC expectations based on the 7, spectra
from [8, 3] contrary to the Daya Bay measurements [10] which exhibit smaller changes
than the MC predictions. Figure 4 shows the correlation between the reactor thermal
power and the number of registered IBD events. The two distributions were equalized
during one month period in 2016. The number of IBD events was corrected for the fuel
evolution using the model of the 7. spectra [3,8]. After that the IBD rate coincides with
the reactor power with about 2% accuracy during 16 months. The only exception is the
one month period after the latest beginning of the campaign for which we do not have
reliable data on the isotope fractions.

Figure 5 shows the ratio of positron energy spectra at the bottom and top detector
positions. The exclusion area in the sterile neutrino parameter space was calculated us-
ing the Gaussian CL; method [11] assuming only one type of sterile neutrinos. For a
grid of points in the Am3,,sin?261,4 plane predictions for the ratio RP™(E) of positron
spectra at the bottom and top detector positions were calculated. Calculations included
the MC integration over the v, production point in the reactor core, v, detection point
in the detector, and positron energy resolution. The 7, production point distributions
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Fig. 4. — IBD counting rate at different detector positions (points) and the reactor thermal
power. The distributions are equalized during the period November 15 December 16, 2016 and
therefore the IBD rate is expressed in MW. The IBD rate is corrected for the fuel evolution with
time using Huber-Mueller model. Statistical errors only.

in the reactor core were provided by the KNPP for different time periods. The distri-
bution averaged over the campaign was used in the calculations. It was checked that
this approximation practically did not influence the final results. The obtained theoret-
ical prediction for a given point in the Am2,, sin?26;, plane was compared with the
prediction for the three neutrino case using the Gaussian CLg method for the 90% confi-
dence level (CL) exclusion area estimation. The difference in x? for the two hypotheses
Ax? = x3, — X3, was used for the comparison. The CL; method is more conservative
than the usual Confidence Interval method.

The x? for each hypothesis was constructed using 24 data points bes in the
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Fig. 5. — Ratio of positron energy spectra measured at the bottom and top detector positions
(statistical errors only). The dashed line is the prediction for 3v case (x* = 35.0, 24 degrees
of freedom). The solid curve is the prediction for the best fit in the 4v mixing scenario (x? =
21.9, sin®26014 = 0.05, Am}, = 1.4eV?). The dotted curve is the expectation for the optimum

point from the RAA and GA fit [4] (x* = 83, sin®26014 = 0.14, Am3, = 2.3eV?).
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(1-7) MeV positron energy range
N

(3) P =D (R =k x B2 o,
i=1

where R" (RY") is the observed (predicted) ratio of 7, counting rates at the two detector
positions and o; is the statistical standard deviation of R%**, and k is a normalization
factor left free in the fit to compensate possible changes in the overall detector efficiency
and in the 7, production point distribution in the reactor core.

The oscillations due to the known neutrinos were neglected since at such short dis-
tances they do not change the 7, spectrum. The procedure was repeated for all points
of the grid in order to get the whole exclusion area. Influence of systematic uncertain-
ties in the parameters was estimated by repeating the analysis with different values of
parameters. A point in the Am?,, sin®26;4 plane was included into the final excluded
area if it appeared in the excluded areas for all tested variations of the parameters. We
varied the energy resolution and the background level by 10% and 15% correspondingly.
We also used a reduced energy range of (1.5-6) MeV in the fit.

Figure 6 shows the obtained 90% CL excluded area in the Am?,, sin?26,, plane. For
some values of Am?, the obtained limits are more stringent than previous results [12-14].
It is important to stress that our results are based only on the comparison of the positron
energy distributions at the two distances measured with the same detector. Therefore the
results do not depend on the 7, spectrum shape and normalization as well as on the de-
tector efficiency. The excluded area covers a large fraction of regions indicated by the GA
and RAA. In particular, the most preferred point Am?2, = 2.3 eV?, sin®20;, = 0.14 [4] is
excluded at more than 5 o CL. In our analysis the point Am?, = 1.4 eV?, sin?26;4 = 0.05
has the smallest y? = 21.9. The difference in x? with the 3v case is 13.1 which corre-
sponds to ~ 30 in case of the y? distribution with 2 degrees of freedom. The significance
of this indication of the existence of the sterile neutrino will be studied taking into account
systematic uncertainties after collection of more data this year.
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