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Summary. — We briefly review different experimental and astrophysical con-
straints of the nuclear equation of state as well as several phenomenological models
and ab initio theoretical approaches commonly used in its description.

1. – Introduction

The equation of state (EoS) of isospin asymmetric nuclear matter is a fundamental
ingredient in the description of the static and dynamical properties of neutron stars, core-
collapse supernova and compact-star mergers [1, 2]. Its determination, however, is very
challenging due to the wide range of densities, temperatures and isospin asymmetries
found in these astrophysical scenarios, and it constitutes nowadays one of the main
problems in nuclear astrophysics. The main difficulties are associated to our lack of a
precise knowledge of the behavior of the in-medium nuclear interaction and to the very
complicated resolution of the so-called nuclear many-body problem [3].

Models of the nuclear EoS are based on reliable experimental data on atomic nuclei
and nucleon scattering. Current nuclear physics experiments, however, cannot probe the
physical state of matter under extreme conditions of density, isospin asymmetry and tem-
perature. Therefore, theoretical models and methods of the nuclear many-body theory,
which have been applied with some success in the description of ordinary nuclear struc-
ture, are required to built the EoS in these unknown regions. However, the reliability of
these models and methods decreases when the conditions of density, isospin asymmetry
and temperature become more and more extreme. Theoretical calculations of the nu-
clear EoS at such extreme conditions can be tested almosy exclusively by astrophysical
observations.

In this work we reviewed some of the experimental and astrophysical constraints of the
nuclear EoS as well as several of the phenomenological models and ab initio theoretical
approaches commonly used in its description. For a more complete and detailed review
we refer the interested reader to refs. [1, 2] for two recent excellent publications on this
topic.
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The manuscript is organized in the following way. The experimental constraints on
the nuclear EoS are presented in sect. 2 whereas the astrophysical ones are discussed in
sect. 3. A brief overview of different theoretical models for the nuclear EoS is given in
sect. 4 followed by a short summary in sect. 5.

2. – Experimental constraints of the nuclear EoS

Around saturation density ρ0 and isospin asymmetry β = (ρn − ρp)/(ρn + ρp) = 0
the nuclear EoS can be characterized by a set of few isoscalar (E0,K0, Q0) and isovector
(S,L,Ksym, Qsym) parameters. These parameters can be constrained by nuclear experi-
ments and are related to the coefficients of a Taylor expansion of the energy per particle
of asymmetric nuclear matter in density and isospin asymmetry:
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Here x = (ρ − ρ0)/3ρ0, E0 is the energy per particle of symmetric nuclear matter at
ρ0, K0 the incompressibility parameter, Q0 the so-called skewness, S0 the value of the
nuclear symmetry energy at ρ0, L the slope of the symmetry energy, Ksym the symmetry
incompressibility, and Qsym the third derivative of the symmetry energy with respect to
the density.

2.1. Experimental constraints of the isoscalar parameters. – Measurements of nuclear
masses [4] and density distributions [5] yield E0 = −16±1 MeV and ρ0 = 0.15–0.16 fm−3,
respectively. The value of K0 can be extracted from the analysis of isoscalar giant
monopole resonances in heavy nuclei. However, its extraction is complicated and not
unambiguous. Results of ref. [6] suggest K0 = 240 ± 10 MeV, whereas in ref. [7] a value
of K = 248 ± 8 MeV is reported, while in ref. [8] K = 210 ± 30 MeV is given. Recently,
Khan et al. [9] have shown that the third derivative M of the energy per unit volume
of symmetric nuclear matter is constrained by giant monopole resonance measurements
not at ρ0 but rather around what has been called crossing density ρ ≈ 0.11 fm−3. These
authors found M = 1100± 70 MeV, whose extrapolation at ρ0 gives K0 = 230± 40 MeV.
Heavy-ion collision experiments would rather point to a rather “soft” EoS, e.g., a lower
value of K0 [10]. However, the constraints inferred from heavy-ion collisios are model
dependent because the analysis of the measured data requires the use of transport models.
The value of the skewness parameter Q0 is more uncertain and is not very well constrained
yet, being the estimated value in the range −500 ≤ Q0 ≤ 300 MeV.

2.2. Experimental constraints of the isovector parameters. – Experimental informa-
tion on the isovector parameters of the nuclear EoS can be obtained from several sources
such as the analysis of giant [11] and pygmy [12, 13] resonances, isospin difussion mea-
surements [14], isobaric analog states [15], isoscaling [16], measurements of the neutron
skin thickness in heavy nuclei [17-23] or meson production in heavy-ion collisions [24,25].
However, whereas S0 is more or less well established (≈ 30 MeV), the values of L, and
specially those of Ksym and Qsym, are still uncertain and poorly constrained. For ex-
ample, combining different data the authors of ref. [26] give 29.0 < S0 < 32.7 MeV and
40.5 < L < 61.9 MeV, while a more recent work [27] suggests 30.2 < S0 < 33.7 MeV and
35 < L < 70 MeV. Why the isovector part of the nuclear EoS is so uncertain is still an
open question whose answer is related to our limited knowledge of the nuclear force and,
in particular, to its spin and isospin dependence.
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3. – Astrophysical constraints

The main astrophysical constraints on the nuclear EoS are those arising from the
observation of neutron stars. After fifty years of observations we have collected an enour-
mous amount of data on different neutron star observables from which it is possible to
infer valuable information on the internal structure of these objects and, therefore, also
on the nuclear EoS, which is the only ingredient needed to solve the structure equations
of neutron stars. In the following lines we shortly review some of these observables.

3.1. Masses. – Neutron star masses can be inferred directly from observations of
binary systems and likely also from supernova explosions. There are five orbital (or
Keplerian) parameters which can be precisely measured in any binary system. These
are: the orbital period (Pb), the projection of the pulsar’s semimajor axis on the line of
sight (x ≡ a1 sin i/c, where i is inclination of the orbit), the eccentricity of the orbit (e),
and the time (T0) and longitude (ω0) of the periastron. Using Kepler’s Third Law, these
parameters can be related to the masses of the neutron star (Mp) and its companion
(Mc) though the so-called mass function

(2) f(Mp,Mc, i) =
(Mc sin i)3

(Mp + Mc)2
=

Pbv
3
1

2πG
,

where v1 = 2πa1 sin i/Pb is the projection of the orbital velocity of the neutron star along
the line of sight. If only one mass function can be measured for a binary system, then one
cannot proceed further than eq. (2) without additional assumptions. Fortunately, devi-
ations from the Keplerian orbit due to general relativity effects can be detected. These
relativistic corrections are parametrized in terms of one or more post-Keplerian param-
eters. The most significant ones are: the advance of the periastron of the orbit (ω̇), the
combined effect of variations in the transverse Doppler shift and gravitational redshift
around an elliptical orbit (γ), the orbital decay due to the emission of quadrupole grav-
itational radiation (Ṗb), and the range (r) and shape (s) parameters that characterizes
the Shapiro time delay of the pulsar signal as it propagates through the gravitational field
of its companion. These post-Kepletian parameters can be written in terms of measured
quantities and the masses of the star and its companion as [28]:
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where n = 2π/Pb is the orbital angular frequency and T� ≡ GM�/c3 = 4.925490947 ×
10−6 s. The measurement of any two of these post-Keplerian parameters together with
mass function f is sufficient to determine uniquely the masses of the two components
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of the system. An example of a high-precision mass measurement is that of the fa-
mous Hulse-Taylor binary pulsar [29] with measured masses Mp = 1.4408 ± 0.0003M�
and Mc = 1.3873 ± 0.0003M�. Another examples are those of the recently ob-
served millisecond pulsars PSR J1614-2230 [30] and PSR J0348+0432 [31] with masses
Mp = 1.928±0.017M� and Mp = 2.01±0.04M�, respectively. These are binary systems
formed by a neutron star and white dwarf. The measurement of these two unusually
high neutron star masses constitutes nowadays one of the most stringent astrophysical
constraints on the nuclear EoS.

3.2. Radii . – Neutron star radii are very difficult to measure mainly because neutron
stars are very small objects and are very far away from us (e.g., the closest neutron star is
probably the object RX J1856.5-3754 which is about 400 light-years from Earth). Direct
measurements of radii do not exist. However, a possible way to determine them is to
use the thermal emission of low-mass X-ray binaries. The observed X-ray flux (F ) and
temperature (T ), assumed to be originated from a uniform blackbody, together with a
determination of the distance (D) of the star can be used to obtained an effective radius

(8) R∞ =

√
FD2

σT 4
.

Here σ is the Stefan-Boltzmann constant. The neutron star radius R can be then obtained
from R∞ through the equation

(9) R = R∞

√
1 − 2GM

c2R
,

where M is the mass of the star. The major uncertainties in the measurement of the ra-
dius throug eqs. (8)–(9) come from the determination of the temperature, which requires
the assumption of an atmospheric model, and the estimation of the distance of the star.
However, the analysis of present observations from quiescent low-mass X-ray binaries is
still controversial. Whereas the analyis of Steiner et al. [32, 33] indicates neutron star
radii in the range of 10.4–12.9 km, that of Guillot et al. [34, 35] points towards smaller
radii of ∼ 10 km or less.

As the reader can imagine the simultaneous measurement of both mass and radius of
the same neutron star would provide the most definite observational constraint on the
nuclear EoS. Unfortunately, althought it is very much desiderable, such a measurement
does not exists yet.

3.3. Rotational periods. – The major part of the known neutron stars are observed
as radio pulsars many of which exhibit very stable rotational periods. Thanks to highly
accurate pulsar timing, observers have been able to measure the rotational period P and
the first time derivative Ṗ and sometimes even the second one P̈ of many radio pulsars
(see e.g. [36-38] and references therein). Observed pulsar rotational periods show the
existence of two different classes of pulsars: that of the normal pulsars with rotational
periods of the order of ∼ 1 s, and that of the so-called millisecond pulsars with rotational
periods three orders of magnitude smaller. The first millisecond pulsar was discovered in
1982 with the help of the Arecibo radio telescope and nowadays more than 200 pulsars
of this class are known. At present the fastest pulsar known till now, with a rotational
period of 1.39595482 ms, is the object named PSR J1748-2446ad which was discovered
in 2005 in the globular cluster Terzan 5 in the Sagittarius constellation.
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3.4. Surface temperatures. – The detection of thermal photons from the stellar surface
in X-ray binaries allows to determine effective surface temperatures of neutron stars by
fitting the observed spectra to blackbody ones. However, one should keep in mind that
neutron stars are not blackbodies, because the hydrogen and helium (or even carbon)
in their atmospheres modifies the blackbody spectrum. In addition the presence of
strong magnetic fields can also modify the surface emission. Surface temperatures are
in fact reduced when realistic atmosphere models are used in the fit of the measured
spectrum. We note that any uncertainty in the determination of the surface temperature
changes the corresponding luminosity L of the star by a large factor according to the
Stefan-Boltzmann law, L = 4πR2σT 4. Therefore, it is not appropiate to use the surface
temperature when comparing with observational data but the luminosity instead.

3.5. Gravitational redshift . – An important source of information on the structure of
a neutron star is provided by the measurement of its gravitational redshift

(10) z =
(

1 − 2GM

c2R

)−1/2

− 1,

which allows to constrain the M/R ratio and, therfore, the nuclear EoS. The interpreta-
tion of measured γ-ray bursts, as gravitationally redshifted 511 keV e± annihilation lines
from the surface of neutron stars, supports a neutron star redshift range of 0.2 ≤ z ≤ 0.5
with the highest concentration in the narrower range 0.25 ≤ z ≤ 0.35 [39].

3.6. Quasiperiodic oscillations. – Quasiperiodic X-ray oscillations (QPOs) in X-ray bi-
naries measure of the difference between the rotational frequency of the neutron star and
the Keplerian frequency of the innermost stable orbit of matter elements in the accretion
disk formed by the diffused material of the companion in orbital motion around the star.
Their observation and analysis can provide very useful information to understand better
the innermost regions of accretion disks as well as to put stringent constraints on the
masses, radii and rotational periods of neutron stars. QPOs may also serve as unique
proves of strong field general relativity. However, the theoretical interpretation of QPOs
is not simple and remains still controversial.

3.7. Magnetic fields. – Since the suggestion of Gold [40] pulsars are generally believed
to be rapidly rotating neutron stars with strong surface magnetic fields. The strength
of the field could be of the order of 108–109 G in the case of millisecond pulsars, about
1012 G in normal pulsars, or even 1014–1015 G in the so-called magnetars. The magnetic
field strength of a pulsar can be estimated from the observation of its rotational period
P and its first derivative Ṗ .

3.8. Glitches. – Pulsars are observed to spin down gradually due to the transfer of
their rotational energy to the emitted electromagnetic radiation. Sudden jumps ΔΩ of
the rotational frequency Ω, however, have been observed in several pulsars followed by
a slow partial relaxation that can last days, months or years. These jumps, mainly
observed from relative young radio pulsars, are known as glitches. The relative increase
of the rotational frequency ΔΩ/Ω vary from ∼ 10−10 to ∼ 5 × 10−6. The first glitches
were detected from the Crab and Vela pulsars [41-43]. Nowadays we know more than
520 glitches in more than 180 pulsars.
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3.9. Timing noise. – One of the most remarkable properties of radio pulsars is their
rotational stability. However, some of them show slow irregular or quasiregular variations
of their pulses over time scales of months, years and longer which have been called pulsar
timing noise. These timing imperfections appear as random walks in the pulsar rotation
(with relative variations of the rotational period ≤ 10−10–10−8), the spindown rate or the
pulse phase. Their nature is still uncertain and many hypotheses have been made (see,
e.g., ref. [44]). Careful studies of the pulsar timing noise can provide valuable information
on the internal structure of neutron stars.

3.10. Gravitational waves. – Gravitational waves originated from the oscillation modes
of neutron stars or during the coalescence of two neutron stars or a black hole and a
neutron star constitute also a valuable source of information. Very recently, on August
17th, 2017, the graviational wave signal from a binary neutron star merger was detected
for the first time by the Advanced LIGO and Advanced VIRGO Collaborations [45]
inaugurating, with the detection of this event (known as GW170817), a new era in the
observation of neutron stars. The very first and preliminary analysis of GW170817 seems
to indicate that neutron star radii should be R < 13 km or even smaller than 12 km (some
analysis suggest R < 11 km). That could put an additional stringent constraint on the
nuclear EoS, since those predicting large radii would be excluded. In addition, a low
value of the upper limit of the tidal deformability seems to favor a soft EoS.

4. – Theoretical approaches of the nuclear EoS

Theoretically the nuclear EoS has been determined by many authors using both phe-
nomenological and microscopic many-body approaches. Phenomenological approaches,
either nonrelativistic or relativistic, are based on effective interactions that are frequently
built to reproduce the properties of nuclei [46]. Skyrme interactions [47-49] and relativis-
tic mean-field (RMF) models [50-52] are among the most used ones. Many of such
interactions are built to describe nuclear systems close to the isospin symmetric case
and, therefore, predictions at high isospin asymmetries should be taken with care. Most
Skyrme forces are, by construction, well behaved close to ρ0 and moderate values of the
isospin asymmetry. However, only certain combinations of the parameters of these forces
are well determined experimentally. As a consequence, there exists a large prolifera-
tion of different Skyrme interactions that produce a similar EoS for symmetric nuclear
mattter but predict a very different one for pure neutron matter. Few years ago, Stone
et al [53] made an extensive and sistematical test of the capabilities of almost 90 existing
Skyrme forces to provide good neutron star candidates, finding that only 27 of these
forces passed the restrictive tests imposed. A more stringent constraint has been recenty
done by Dutra et al. [54] who have examined the suitability of 240 Skyrme interactions
with respect to 11 constraints derived from experimental data and the empirical prop-
erties of symmetric matter at and close to saturation density. These authors found that
only 5 of the 240 analyzed interactions satisfied all the constraints imposed.

Relativistic mean-field models are based on effective Lagrangians densities where the
interaction between baryons is described in terms of meson exchanges. The couplings
of nucleons with mesons are usually fixed by fitting masses and radii of nuclei and the
properties of nuclear bulk matter, whereas those of other baryons, like hyperons, are
fixed by symmetry relations and hypernuclear observables. Recently, Dutra et al. [55]
have analyzed, as in the case of Skyrme, 263 parametrizations of 7 different types of
RMF models impossing constraints from symmetric nuclear matter, pure neutron matter,
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symmetry energy and its derivatives finding that only a very small number of these
parametrizations is consistent with all the nuclear constraints considered in that work.

Microscopic approaches, on other hand, are based on realistic two- and three-body
forces that describe scatterinng data in free space and the properties of the deuteron.
These interactions are based on meson-exchange [56-65] or, very recently, on chiral per-
turbation theory [66-69]. To obtain the EoS one has to solve then the complicated
many-body problem [3] whose main dificulty lies in the treatment of the repulsive core,
which dominates the short range of the interaction. Different microscopic many-body
approaches have been extensively used for the study of the nuclear matter EoS. These
include among others: the Brueckner-Bethe-Goldstone [3, 70] and the Dirac-Brueckner-
Hartree-Fock [71-73] theories, the variational method [74], the correlated basis func-
tion formalism [75], the self-consistent Green’s function technique [76, 77], the Vlow k

approach [78] or Quantum Monte Carlo techniques [79-81]. The interested reader is
referred to any of the quoted works for details on these approaches.

5. – Summary

We have briefly reviewed different experimental and astrophysical constraints of the
nuclear EoS as well as of several phenomenological models and ab initio theoretical ap-
proaches commonly used in its description. Although major experimental, observational
and theoretical advances on understanding the nuclear EoS have been done in the last
decades and will be done in the near future, only its isoscalar part is rather well con-
strained. Why the isovector part of the nuclear EoS is less well constrained is still an
open question whose answer is probably related to our limited knowledge of the nuclear
force and, in particular, of it spin and isospin dependence.
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[54] Dutra M., Lourenço O., Sá Martins J. S., Delfino A., Stone J. R. and Stevenson

P. D., Phys. Rev. C, 85 (2012) 035201.
[55] Dutra M., Lourenço O., Avancini S. S., Carlson B. V., Delfino A., Menezes

D. P., Providência C., Typel S. and Stone J. R., Phys. Rev. C, 90 (2014) 055203.
[56] Nagels M. M., Rijken Th. A. and de Swart J. J., Phys. Rev. Lett., 31 (1973) 569.
[57] Machleidt R., Holinde K. and Elster Ch., Phys. Rep., 149 (1987) 1.



THE NUCLEAR EOS: FROM EXPERIMENTS TO ASTROPHYSICAL OBSERVATION 9

[58] Nagels M. M., RIjken Th. A. and de Swart J. J., Phys. Rev. D, 17 (1978) 768.
[59] Holzenkamp B., Holinde K. and Speth J., Nucl. Phys. A, 500 (1989) 485.
[60] Haidenbauer J. and Meissner U.-G., Phys. Rev. C, 72 (2005) 044005.
[61] Maesen P. M. M., Rijken Th. A. and de Swart J. J., Phys. Rev. C, 40 (1989) 2226.
[62] Rijken Th. A., Stoks V. G. J. and Yamamoto Y., Phys. Rev. C, 59 (1999) 21.
[63] Stoks V. G. J. and Rijken Th. A., Phys. Rev. C, 59 (1999) 3009.
[64] Rijken Th. A., Phys. Rev. C, 73 (2006) 044007.
[65] Rijken Th. A. and Yamamoto Y., Phys. Rev. C, 73 (2006) 044008.
[66] Weinberg S., Phys. Lett. B, 251 (1991) 251.
[67] Weinberg S., Nucl. Phys. B, 363 (1991) 3.
[68] Entem D. R. and Machleidt R., Phys. Rev. C, 68 (2003) 041001.
[69] Epelbaum E., Göcke W. and Meissner U.-G., Nucl. Phys. A, 747 (2005) 362.
[70] Day B. D., Rev. Mod. Phys., 39 (1967) 719.
[71] ter Haar B. and Malfliet R., Phys. Rep., 149 (1987) 207.
[72] ter Haar B. and Malfliet R., Phys. Rev. C, 36 (1987) 1611.
[73] Brockmann R. and Machleidt R., Phys. Rev. C, 42 (1990) 1965.
[74] Akmal A., Pandharipande V. R. and Ravenhall D. G., Phys. Rev. C, 58 (1998) 1804.
[75] Fabrocini A. and Fantoni S., Phys. Lett. B, 298 (1993) 263.
[76] Kadanoff L. P. and Baym G., Quantum Statistical Mechanics (Benjamin, New York)

1962.
[77] Dickhoff W. H. and Neck D. V., Many-Body Theory Exposed! Propagator Description

of Quantum Mechanics in Many-Body Systems (World Scientific, Singapore) 2005.
[78] Bogner S. K., Kuo T. T. S. and Schwenk A., Phys. Rep., 386 (2003) 1.
[79] Wiringa R. B., Pieper S. C., Carlson J. and Pandharipande V. R., Phys. Rev. C,

62 (2000) 014001.
[80] Carlson J., Morales J., Pandharipande V. R. and RAvenhall D. G., Phys. Rev.

C, 68 (2003) 025802.
[81] Gandolfi S., Illarionov A. Y., Schmidt K. E., Pederiva F. and Fantoni S., Phys.

Rev. C, 79 (2009) 054005.


