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Summary. — We propose new theoretical approaches in order to introduce fluc-
tuations in an Extended-TDHF description. On the one side, a prescription for
estimating the dispersions in one-body observables related to small amplitude fluc-
tuations of the statistical kind is proposed. On the other side, the characterization
of large amplitude density fluctuations generated by multiparticle correlations is
addressed through a stochastic extension yielding Langevin-type fluctuations. Ap-
plications to nuclear collisions at incident energies around the Fermi energy are
presented.

1. – Motivation

The relevance of the contribution to nuclear physics of dynamical mean-field theories
is well established. These models have been successful namely in the description of
collective behavior in nuclei and in heavy-ion collisions (HIC) at low energies (less than
10 MeV/n). At higher energies this approximation turned to be insufficient to correctly
describe the dissipative processes experimentally observed. Then extensions have been
developed aiming at incorporating, at least partially, those residual interactions neglected
in pure mean field descriptions. Semi-classical or quantal models have been advanced,
by incorporating a Boltzmannian (or Uehling-Uhlenbeck) collision term. These models
described efficiently the dissipative and irreversible evolution of nuclear systems toward
equilibrium.

Nevertheless, these approaches also attained their limits when they failed to describe
the dispersions of measured observables and the occurrence new phenomena evidenced
in increasingly more accurate experimental investigations. Among these phenomena,
intermediate mass fragment production, multifragmentation and vaporization are found.

The search of a convenient description of those processes has been a challenge for
nuclear many body theories for many years but complex dissipative processes, where
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thresholds are present and where different types of instabilities compete, are still difficult
to describe within a unified picture.

The purpose of this work is to contribute to this problematics proposing a new ap-
proach based on a model belonging to the class of extended mean field theories, the
so-called Extended Time Dependent Hartree-Fock model (E-TDHF), which has been
conditioned to generate the required fluctuation phenomenology.

2. – Extended Time Dependent Hartree-Fock description

The starting point is the quantal Boltzmann-like equation of motion for the one-body
density matrix [1]:

i�ρ̇ = [h, ρ] + iK(ρ),(1a)

with h =
p2

2m
+ VHF (ρ),(1b)

where V HF = Tr2{VA(1, 2)ρ(2)} is the self-consistent mean field. In this work we have
implemented the so-called SKT5 force [2], which is an interaction of the Skyrme type:
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The nuclear matter coefficients corresponding to (2) are listed in table I.
The K term is the collision kernel, consisting in a master equation for the

populations [1]:

Kα(ρ) =
∑
β,γ,δ

Wαβγδ[ργρδ(1 − ρα)(1 − ρβ) − ραρβ(1 − ργ)(1 − ρδ)],(3)

where the terms Wαβγδ are transition probabilities usually obtained in the weak-
interaction and Markovian limits. They go as the square of the two-body interaction and
the matrix elements of the latter are modelized in terms of nucleon-nucleon cross-section
σnn. In all calculations σnn is energy and isospin dependent, without any in-medium
corrections. Equation (1a) is solved by expanding single particle wave functions and the
one-body density matrix in a time-dependent coherent states (CS) basis |αλ

i 〉(t):

|ϕλ〉(t) =
mλ∑
i

cλ
i |αλ

i 〉(t),(4)

Table I. – Infinite nuclear matter properties.

K0 (MeV) Ksym (MeV) J (MeV) L (MeV)

201.69 −24.76 36.30 96.52
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where mλ is the number of CS per single-particle (SP) level and does not need to be the
same for all levels, and where the coefficients cλ

i are constant and fixed at t = 0. The evo-
lution of the moving basis is given through the equations of motion of the corresponding
α’s parameters, i.e., centroids and widths [1]. This description provides all the available
information about the (irreversible) mean behavior of the system.

3. – Untangling fluctuations in E-TDHF approximations

In order to describe the dispersion of observables around their mean values we searched
a prescription to untangle fluctuations around the average density from our E-TDHF
description. It can be postulated that statistical fluctuations are generated by a mani-
fold of microscopic configurations each one described by a convenient many-body state.
A unique Slater determinant (SD) cannot be a solution of the many-body problem, the
description must allow the possibility for the system to perform transitions from one
SD to another as a result of nucleon interactions. For this reason instead of associating
the one-body density matrix to a single SD, we can associate it to a set of SD |Ψk〉, all
compatible with the initial conditions [3].

|Ψ〉 =
∑

k

ak(t)|Ψk〉 with |Ψk〉 = A|ϕλ1〉|ϕλ2〉...|ϕλN
〉,(5)

where A is an antisymetrization operator. The evolution of the coefficients ak(t) can
formally be extracted from the Schrödinger equation and then density matrices, from
the N -body one ρ(N) to all reduced density matrices, can be obtained. In practical
grounds, due to the use of finite sets of SD and to the lack of information about the
initial state, this description turns to be anyways incomplete and the idea of solving the
equations of motion for the coefficients a(t) must be abandoned.

A statistical point of view may then be adopted proposing that at any time the state
of the system is a statistical admixture of SD {Ψk} with probabilities {pk}. These SD
actually evolve in a modified mean field, different from a pure mean field since it has
been updated as a consequence of residual interactions. In this way the most general
(or least biased) solution to the N -body problem compatible with the one and two-body
information contained in the E-TDHF description is an incoherent superposition of the
corresponding single particle SD:

ρ(N) =
∑

k

pk{|Ψk〉〈Ψk|}.(6)

One-particle states are spanned in a time-dependent CS basis and after some mathe-
matical handling it is possible to write the N -body density matrix in terms of CS slater
determinants (CSSD):

ρ(N) ∼
∑

I

ωI |ΠI〉〈ΠI | with |Π(k)
q 〉 = A|αi1αi2 ...αiN

〉,(7)

where a supplementary decoherence assumption of vanishing non-diagonal contributions
has been made.

With the purpose of illustrating this procedure the, 58Ni+58Ni reaction at 50 MeV/n
incident energy and b = 3 fm impact parameter has been considered. The isotropy ra-
tio RE = 〈E⊥〉/2〈E‖〉, where E⊥ and E‖ are perpendicular and parallel kinetic energy
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Fig. 1. – (Color online) Mean isotropy ratio (triangles) and dispersions (squares) as a function
of time. Full lines correspond to data from ref. [4] (upper line) and [5] (lower line).

contributions, respectively, was calculated and represented in fig. 1 as a function of time.
The interest of this observable lies in that kinetic energy transfer, which is related to
microscopic collisional processes, can serve to constrain theoretical models and to ob-
tain informations about the nucleon-nucleon cross-section. The theoretical values of RE ,
obtained for 104 CSSD, are represented in blue tones squares and the corresponding av-
erage value in black triangles. They are compared with experimental data from refs. [4]
(red) and [5] (yellow) straight lines. The above references correspond to different event
selections: Z = 1 in [4] and all fragments in [5]. For the simulation there is neither par-
ticular selection nor experimental bias corrections. It can be noticed that after a strong
enhancement, taking place during the interpenetration stage, 〈RE〉 values reflect some
resilience effect from the mean field and are then confined between both experimental
results.

Another exemple is depicted in fig. 2 where transverse kinetic energy distributions
in the 36Ar+58Ni reaction at 95 AMeV are shown. Experimental data are extracted
form ref. [6] and represented on the right. The calculated values are obtained for a
sample of 104 CSSD and for an impact parameter spectrum from 1 to 10 fm. The most
central collisions are depicted in orange tones while the more peripheral ones are in green.

Fig. 2. – (Color online) Left: transverse energy distribution for different impact parameters b.
Right: data extracted from ref. [6].
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It can be noticed that the energy corresponding to the theoretical bell-shaped distribution
maxima agree with the experimental values for the estimated impact parameter indicated
by vertical lines (on the right). In this sense we can state that the calculated correlation
E-b is consistent with the data.

4. – Beyond E-TDHF

One way to extend our description in order to describe large density fluctuations is by
taking advantage of the significant work already done around the Botzmann-Langevin
(BL) approach [7] which has been proven to be well suited for treating the fluctuations
of the one-body distribution function f generated by multi-particle correlations in semi-
classical transport approaches:

(8)
∂f

∂t
= {h[f ], f} + K̄[f ] + δK[f ].

In this work we adopted the philosophy of the Bolzmann-Langevin One-Body (BLOB)
model [8] which is a particular realization of the BL equation and adapted it to our for-
malism. A stochastic E-TDHF (S-E-TDHF) approach is then proposed taking advantage
of the microscopic information in terms of SD which is available at any time during the
collision. The model samples a given CSSD at each time step so as to define possible
locations of nucleonic wave packets. Those latter are built around the sampled CS, taken
as a reference, and incremented by other coherent states which are as close as possible
to the reference CS in phase-space. The collisions proceed involving agglomerates of CS
which are rearranged each time step into new nucleonic wave packets. Finally, the scat-
tered nucleonic wave packets should be adapted to the final state in terms of momentum
widths and occupancies, ensuring that Pauli blocking is not violated.

In order to inspect the consistency between both models the initial stages of the
central 36Ar+58Ni reaction at 74 AMeV incident energy has been computed. Simulations
were parameterized to use a comparable number of test particles and average coherent
states per nucleon in BLOB and in S-E-TDHF models, respectively, and fixed to 64.
The nucleon-nucleon cross-section is set in both simulations equal to the free isospin
and energy dependent form. The respective effective forces are in both cases analogous
adaptations of the Skyrme force. On the left panel of fig. 3 the spatial distribution on
the reaction plane is depicted for some sorted coordinates points (yellow) as well as the
projection onto the longitudinal direction (blue dashed-line) for the S-E-TDHF approach.
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Fig. 3. – (Color online) On the left the spatial density projected on the reaction plane XZ (dots)
and on the beam axis z for BLOB (in dashed line) and for E-TDHF (in solid line) models is
shown. On the right the momentum distribution with the same conventions for both models is
shown.
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Fig. 4. – (Color online) Collision rates and variance as a function of time. On the left the number
attempted collisions, on the right the effective ones. For more details see the text.

The projected spatial density for BLOB is depicted in red solid line. On the right panel
are represented the corresponding projections onto the longitudinal direction of both
momentum distributions with the same color convention as in the left panel. From these
figures it can be noticed the good correspondence between both descriptions.

Another probe of the consistency of the description is the analysis of collision rates.
In fig. 4 the attempted number of collisions (on the left) and the effective ones after Pauli
blocking (on the right) are represented as a function of time for E-TDHF, BLOB and
S-E-TDHF descriptions. The number of collisions increases during the initial compression
stage and a dilute stage follows in which it drops and then slightly increases for both
stochastic models. The corresponding minimum values should sign the onset of fragment
formation or separation in a binary event. The similarity between S-E-TDHF mean
collision number and the variance ensures that the fluctuations stand out with the correct
Langevin amplitude [8].

Finally, let us consider again the head-on collision 36Ar+58Ni reaction at 74 AMeV.
In fig. 5 the density profiles for the E-TDHF (top) and S-E-TDHF (bottom) descriptions
are depicted. In the first case, the evolution remains essentially binary, while in the
other the projectile completely breaks up after going through the target, producing a
forward jet-like configuration [9] and leaving behind a massive target-like residue. The

t=0 fm/c 40 80 120 160

ETDHF 36Ar+58Ni 74 AMeV

Fig. 5. – (Color online) Density profiles at different times for E-TDHF model (top) and for its
stochastic extension (bottom).
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transition towards vaporisation on the system Ar+Ni has been measured experimen-
tally [10]. Such phenomenology is consistently described both in the present approach
and in it semiclassical analogue BLOB [9].

5. – Conclusions

The purpose of this work was to propose a new procedure for the description of density
fluctuations on the basis of the extended TDHF. After recalling the bases of the model
we discussed a prescription to untangle statistical, small-amplitude, fluctuations in terms
of a manifold of incoherent mixing of coherent states Slater determinants as the least
biased many-body state, compatible with the E-TDHF description. This prescription is
shown to be compatible with the experimental trends in some exemples. On the other
side, the treatment of large density fluctuations have been undertaken in the spirit of
the Boltzmann-Langevin approach, in order to describe the occurrence of the variety of
exit channel mechanisms observed in HIC experiments and their relative probabilities.
Preliminary results exhibit, on the one side, the coherence of the description and, on the
other, the significant improvement on the collision dynamics of the stochastic extension
when compared with the standard ETDHF approximation. These results are promising,
inciting us to move forward on the refinement of the model, in particular concerning the
treatment of nucleon-nucleon correlations and intermediate-mass clusters formation in
order to properly depict the onset and evolution of fragments.

REFERENCES
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