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Summary. — EURADOS (European Radiation Dosimetry Group) Working Group
12 (dosimetry in medical imaging) established a subtask devoted to the dosimetry
of the medical staff employed in interventional radiology practices. As it is widely
known, such practices are characterized by high doses, with respect the other med-
ical procedures, both for the patient and the radiologist. For interventional car-
diology there are several publications concerning medical staff dosimetry, on the
contrary, for interventional radiology, data are more limited. For that reason WG-
12 decided to study the irradiation scenario, employing simplified anthropomorphic
models (MIRD type) with Monte Carlo simulations, reconstructing some specific
interventional radiology practices (PTC and TIPS). In these procedures, where the
X-ray C-arm is mainly fixed in PA projection and the beam directed to the patient
abdomen, the radiologist is next to the patient right side, in correspondence to the
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liver region. The usage of the ceiling shielding is not very frequent, due to the dif-
ficulties in positioning it between the radiation source (the X-ray and the patient
as the scattering source) and the operator. The aim of the simulations program
is: to evaluate the dose received by the radiologist, in a region simulating the pres-
ence of the dosemeter fixed on the lead apron at the breast level; to estimate the
corresponding effective dose; to make a sensitivity analysis on different parameters
affecting the calculated results (as the reciprocal position between the two opera-
tors, the beam quality and the X-ray field dimension). Indeed a particular attention
is devoted to the eye lens dosimetry, that has become a “critical issue” for person-
nel dosimetry, after ICRP has reconsidered the radiation sensitivity of the lens of
the eye. In the present work the general scheme, the assumptions and the followed
methodology are presented with some very preliminary results of the simulations
and the measurements.

1. – Introduction

Interventional radiology and cardiology are widespread practices because they repre-
sent a minimally invasive valuable option for diagnosis and treatment of several patholo-
gies (of heart, coronary and vascular system, biliary, esophagus, gastric and genitourinary
system), for tumor therapy (embolization procedures) and pain management (vertebro-
plasty). These practices have large benefits for the patients, reducing hurt and avoiding
the side effects of surgical treatments, but are known to increase the radiation exposure
of patient and operators [1-4]. As a matter of fact, being fluoroscopy a guided procedure,
the medical staff remains close to the patient during large part of the procedure and
receives the radiation scattered by the patient itself [5-7]. In such context medical-staff
radiation protection is a pivotal issue.

That scattered radiation is influenced by different factors such as the complexity
of the procedure, the peculiarity of the case, the size of the patient, possible additional
complications that extend the practice duration, the position and distances of the medical
staff to the patient, the proper shielding and protective garments employment [8,9]. Some
of these items are not controllable by the medical staff, instead others, such as the proper
shielding usage, that could have a relevant impact on the radiation exposure, are [10,11].
In such context training and education can induce a better knowledge of the risk [12] by
increasing the individual sensitivity to the radiation protection practice and leading to a
better radiation dose awareness improving radiation safety.

With such intentions Working Group 12 (WG-12 dosimetry in medical imag-
ing) has been established in EURADOS (European Radiation Dosimetry Group,
http://www.eurados.org/). WG-12 activities have been aimed at patient and medical-
staff radiation protection (with the exception of radiation therapy that is the focus of
the EURADOS WG-9 group): skin dose measurement and dose alert thresholds in in-
terventional practice [13-15]; eye lens dosimetry in interventional cardiology [16-20] and
CT fluoroscopy [21].

The current WG-12 topics include, for patient dosimetry, skin dose mapping in clini-
cal settings, reference levels for interventional cardiology and cone-beam CT dosimetry;
whilst for medical-staff radiation protection, dosimetry of the lens of the eye (a crucial
issue after the revision of its radiation sensitivity [22, 23]); a comparison of dosemeters
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response calibrated in terms of Hp(3); test active personal dosemeters, APD, usually em-
ployed in nuclear and industrial applications, in interventional radiology and cardiology
room and a study of the exposure conditions of the physician in Percutaneous Transhep-
atic Cholangiography (PTC) and Transjugular Intrahepatic Portosystemic Shunt (TIPS),
through Monte Carlo simulations, that is the subject of the present work.

In interventional radiology PTC is a quite frequent procedure, whilst TIPS is less fre-
quent but is characterized by a higher dose to patient and medical staff, due to the longer
fluoroscopy time. Considering the KAP-meter(1) measurements and the fluroscopy time,
60Gy · cm2 and 23 minutes can be reached for a biliary procedure vs. 446Gy · cm2 and
115 minutes for TIPS (data taken from [24]). Notwithstanding the fact that these prac-
tices give lower radiation exposures to the medical staff with respect to interventional
cardiology practices, being the radiologist really close to the patient abdomen, under
which the X-ray source is placed, the doses received by the unprotected part of its body
can be relevant [24] and this is particularly true when the ceiling shielding and the pro-
tective goggles are not properly used [25]. Taking into account the intrinsic variability
of these procedures, numerical models and Monte Carlo simulations can supply impor-
tant information on different parameters influencing the medical staff exposure. The
aims of this study are therefore addressed to: evaluate the dose registered during the
practice simulating the presence of a dosemeter fixed on the radiologist lead apron; de-
termine the effective dose and doses to the lens of the eye and to the brain; perform a
sensitivity analysis on different parameters affecting the calculated results (as the op-
erators position, beam quality and X-ray field dimension); evaluate the effectiveness of
the shielding in reducing the estimated doses. The study is just begun and will continue
for several months. In the present paper the scheme, the main assumptions and the fol-
lowed methodology are presented with some very preliminary results of the simulations
compared to measurements and published data.

2. – Material and methods

2.1. The description of the irradiation scenario. – The irradiation scenario is shown in
fig. 1. The patient and the two operators are described through a modified version of the
MIRD model [26] developed during the ORAMED project [8]. The MIRD model is based
on the standard man description [27] and is 176 cm and 73 kg. During the ORAMED
project, arms were modified and bent in order to better mimic their position in the
interventional practice. In the present study the eyes were further modified, accordingly
to a previous work [20], and a small volume, representing the eye lens, has been added
inside the eye-ball. Indeed the operator brain (a simple ellipsoid) was subdivided into
sections to better investigate the exposure condition of this organ. Tissue composition
and densities have been taken from the ICRU report No.46 [28].

To reproduce the protective garment worn by the operators, a 0.5 mm lead apron and
a thyroid collar were simulated. Contrary to what happens in interventional cardiol-
ogy, in interventional radiology only few X-ray beam projections are used and generally

(1) The KAP-meter is a transmission chamber installed on the X-ray tube exit on the C-arm
used in the interventional practices to monitor the X-ray emission during the whole procedure.
The measurements of the KAP-meter, expressed as the product by the kerma in air and the
dimension of the fields, are normally used as a normalization factor to compare among practices
and different measurements and can be employed as a first rough index of the dose received by
the patient.
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Fig. 1. – The X-ray beam projections and some cuts of the anthropomorphic models showing
internal organs and tissues.

Postero-Anterior (PA) is predominant, if not unique, in many operations. However, for
completeness and to compare outcomes with other studies, three additional X-ray beam
projections were added: Right-Anterior Oblique 25◦, RAO 25, Left-Anterior Oblique 25◦,
LAO 25, and Cranio-Caudal 25◦, CRA 25. Only the lead shielding behind the patient
couch is considered.

X-ray beam spectra where selected from the IPEM catalogue [29] and vary in terms
of kV Al and Cu additional filtration. The X-ray beam is produced by a point source
emitting a cone of photon, of fixed dimension, on the patient. In order to reproduce
the square field of modern digital equipment, an ideal filter was inserted between the
source and the simulated KAP-meter. The filter kills all the photons outside its central
square aperture (i.e., imp:p = 1 in the center and imp:p = 0 outside the aperture in
MCNP syntax). The KAP-meter was designed as a simple thin volume of air between
the source and the patient, rotating together with the source and the image device (a
simple parallelepiped but shielded in order to absorb the leaking radiation). The source
to the skin distance (SSD) was set to about 60 cm and the distance between the source
and the image device (SID) was about 90 cm. These distances were kept constant for
all irradiation conditions and are fairly representative of the routine practice. At the
entrance of the image device, where the radiation exiting from the patient should be
detected, a second thin air filler layer (called here IDEK: Image Device Entrance Kerma)
is used for the normalization among projections. This should mimic the presence of the
Automatic Exposure Control (AEC)(2). The first operator is placed near the patient
abdomen, with the hands almost in the X-ray field, a quite common situation in these

(2) During the interventional practice, the Automatic Exposure Control (AEC) works to max-
imize the image quality and reduce the patient exposure: this implies that, depending on the
projection (and on the absorption offered by the part of the patient traversed), the AEC controls
the quantity of the photons emitted during the fluoroscopy and reaching the image device.
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practices, and the second operator on its right (see fig. 1). To simulate the registered doses
during medical-staff monitoring, a simplified dosimetric scoring volume was simulated as
a small sphere (1 cm radius), filled by air, and positioned at the level of the breast of the
operator, over the Pb apron. A second dosemeter was placed at the level of the waist.
Both were put in on the sagittal mid-plane of the models, but a sensitivity analysis
on their position is planned. Indeed, in order to simulate the response of a dosemeter
positioned under the apron, an additional spherical volume, but filled by soft tissue, was
cut inside the anthropomorphic model trunk, just below the skin, at 1 cm depth.

2.2. Scheme of the Monte Carlo simulations. – The dosimetric study was divided
into different tasks. For each task the different projections and the two operators are
considered:

1) Doses to the operators: the scattered photon fluence entering the simulated doseme-
ter on apron is converted into Hp(10) employing Hp(10)

φ conversion coefficients [30]
(DE/DF card in MCNP syntax).

2) Protective garment: considering the absorbed dose inside and outside the apron it
is possible to evaluate the efficiency of the protection supplied by the apron itself.

3) Eye lens doses: evaluate the doses to the lens of the eye lenses of the operator
and compare the result with the dose received by the simulated dosemeter on the
chest. This should allow to determine a sort of “dosimetric index” of the dose to
the unprotected eye starting from the simulated measurement on the trunk.

4) “Male” effective dose: calculate the “male” effective dose for the two operators
(they are both male) comparing it with the simulated Hp(10).

5) Dose to the brain: evaluate the exposure of this organ and determine the corre-
sponding “dosimetric index” as in the eye lens case.

These simulations have been performed in a “reference condition” (90 kV, 3 mm Al
and 0.2 mm Cu, 54.8 keV mean energy beam) but the following parameters are inserted
in the sensitivity analysis: i) the beam spectrum; ii) the operators position —moving the
operators to their right in direction of the patient legs (a configuration more similar to
the interventional cardiology scenario in which the cardiologist works in “femoral access”
condition); iii) the presence of shielding —ceiling shielding and protective goggles; iv) the
beam field dimensions; v) the position of the dosemeters on the apron, shifting the scoring
region from the sagittal mid-plane to the left (toward the beam) and to right (away from
the beam). Quantities calculated by Monte Carlo simulations are generally given per
source particle. In order to compare the outcomes with other studies a normalization is
necessary. In interventional practices (and this happens also for the measurements) it is
straight to express the results normalized by the KAP-meter. This is the reason why the
KAP-meter has been simulated as described above.

These cases were distributed among the members of the group that use different Monte
Carlo codes and version: MCNP4B [31], MCNPX [32], MCNP6 [33], PENELOPE [34]
and different photon libraries (mcplib22, mcplib84, EPDL97). To improve the statistic
of some results (particularly for the eye lens tally regions that have less than 1 cm3

volumes) a variation reduction technique [35], consisting in a semi-deterministic estimator
(DXTRAN sphere, in MCNP syntax), has been applied.
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Fig. 2. – Left: simulated Hp(10) for the considered beam projections at reference beam qual-
ity; Right: simulated X-ray beam qualities —70 kV, 80 kV, 90 kV reference beam, 110 kV and
100 kV— for the PA projection. (AEC means that the curve was corrected simulating the AEC
effect.)

3. – Results

The simulations and the subsequent sensitivity analysis are still in progress. In this
paragraph only some preliminary results are provided. The associated uncertainties are
generally of the order of few per cent and always lower than 10%.

3.1. Simulated Hp(10). – In fig. 2, left, the simulated Hp(10) values for the four
considered projection, calculated for the scoring region on the trunk, on the apron at
breast level, for the first and second operators are shown. The plots are normalized by
the simulated KAP value. The AEC exposure correction factor is evaluated as the ratio
between the given projection IDEK (Image Device Entrance Kerma) and the PA IDEK.
Due to the fact that in the PA projection the patient thickness traversed by the radiation
is the smallest, in all the cases the IDEK correction factor is higher than one. For the
first operator, that is closest to the X-ray source, the projection plays a leading role and,
as expected, the more protected condition corresponds to the RAO 25, when the image
device contributes to an additional shielding for the operator upper part. This effect
is not visible in the second operator, that is farther from the source, and that presents
almost constant values except for the CRA 25. The data are generated for the “reference
beam” (90 kV, 3 mm Al and 0.2 mm Cu, 54.8 keV mean energy beam) and, considering
PA, Hp(10) is about 10μ Sv/(Gy · cm2) for the first operator and and 3μ Sv /(Gy · cm2)
for the second.

Generally the thicker the patient is, the higher kV is needed to compensate the lack
of photon fluence in the image device. In this case, not changing the patient thickness,
the “mitigation effect” of the AEC, calculated through IDEK ratios, can be clearly
perceived in fig. 2, right. Here the operator-1 data for PA projection are reported as a
function of the mean energy of the X-ray filtered beam spectrum, for some tested X-ray
beam qualities. The Hp(10) simulated values increase with the increase of the beam
mean energy because of the increase of the fluence and average energy of the scattered
photons toward the scoring region. This trend is consistent with the measurements
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performed by Vano (for pediatric cardiology) and reported in [36]. Because the Hp(10)
φ

conversion coefficients are monotonically increasing in the range 40–60 keV, an increase
of the scattered photon average energy produces and increase of the evaluated Hp(10).

In order to check the reliability of the calculated results a first comparison has been
done with the literature data taken from Olgar et al. [37]. In that study interventional
radiology procedures were considered and the X-ray data set-up (91 kV and 2.7 mm Al)
is similar to that chosen as the reference condition in our work. To calculate Hp(10) from
the 10μSv/(Gy · cm2) and 3μSv/(Gy · cm2) rates, the median KAP values reported for
PTC in table 3 by Olgar et al. was used. But Hp(10) cannot be directly compared to
the effective dose reported by Olgar et al. (calculated through the Niklason algorithm
that uses shielded and unshielded dosemeters). For that reason we employed the thyroid
unshielded dosemeter value, reported in Olgar et al. in table 5. This is correct because
thyroid and eye lens doses are comparable in this irradiation scenario [24]. That value,
0.363 mGy, expressed in terms of absorbed dose (kerma), was converted in Hp(10) us-
ing the ratio between Hp(10) and kerma, 1.46, derived from our simulation, that gives
0.53 mSv.

A second comparison has been done with the measurement performed in Saint James
Hospital in the interventional radiology room in the framework of a WG-12 organized
study on the reliability of Active Personal Dosemeter (APD), whose results are still under
revision. APD (EPD MK-2 Thermo c© in this case) have been distributed to medical staff
to be worn on apron in association with a passive dosemeter, a Radio Photo Luminescent
(RPL) dosemeter supplied by IRSN (to be used as reference dosemeter). For different
days of practice, when the doses registered by APD reached a fixed value, they were saved,
reset to zero, and the associated RPL removed and substituted with a not irradiated one.
These measurements were repeated and the calculated mean results per procedure ranged
between 50 and 140 μSv (more details will be provided when the full analysis will be
completed).

The results of these comparisons are reported in table I. Because the 1st and 2nd op-
erators exchange their roles during the working day a “mean operator” can be considered.
In that case the 0.64 mSv resulting from the simulations is consistent with the thyroid
value by Olgar et al. (converted in Hp(10)) and with the data measured in Saint James
Hospital. In the last case one has to take into account that it was not an ad hoc test per-
formed in hospital, like in [37], but a routine monitoring with all the possible sources of
influence (type of procedure different from PTC, duration, KAP values, changing roles,
usage of the shielding, etc . . .). Comparing all this with the “rigidity” of the simulated
scenario, the results can be considered satisfying.

3.2. Eye lens absorbed dose. – In fig. 3, left, the simulated doses to the lens of the eyes
(normalized to the simulated KAP-meter value), for the two operators, for the reference
radiation and the four projections considered are reported. As in the previopus case,
the RAO projection offers a further protection of the operators reducing doses to the
eye lenses, on the contrary LAO increases the exposure to the operators’ head. This is
in agreement with what was already found in previous works [8, 9, 20]. As can be seen,
for the first operator the left and right lenses doses are almost the same. This happens
because it is positioned in correspondence of the beam axis (see fig. 1); instead for the
second operator the known difference between the eyes is visible. In fig. 3, right, the PA
eye lens doses for the two operators are shown as a function of the distance from the
reference position. In these simulations the operators were shifted to the right, towards
the patients legs, in a configuration that resembles, at least for the first operator, the
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Table I. – Calculated Hp(10) per procedure and comparison with data taken from [37] and
average of APD measurements in Saint James Hospital.

KAP [37] 1st-operator 2nd-operator “mean-operator” Thyroid S. James
values dosemeter dosemeter dosemeter dosemeter Hospital
table 3 Hp(10) Hp(10) Hp(10) Hp(10) [37] Hp(10)
“

microSv
Gy·cm2

”

(mSv) (mSv) (mSv) (mSv) (mSv)

97.53∗ 1.01 0.27 0.64 0.53∗∗∗

3.95–282.55∗∗ 0.04–2.92 0.01–0.79 0.03–1.86 0.05–0.14

∗Median value.
∗∗Min and max values.
∗∗∗See the text.

condition of interventional cardiology femoral access and, at the highest distance, the
“conventional” factor of about two between left and right the eye lens doses [9, 38] are
indeed recovered.

4. – Conclusions

WG-12 EURADOS activities are driven to radiation protection in the medical field.
The present work aims at a better knowledge of the personnel radiation exposure in
interventional radiology. Because the study is still in progress, the main scheme, that
is based on a detailed modelling of the different aspects that characterize the medical-
staff irradiation scenario, has been given with some very preliminary results which are
provided for the Hp(10) and for eye lens absorbed dose evaluation. The agreement be-
tween the present work outcomes and the published data can be considered a validation
of the employed models. More results, including dose to the brain, effective dose and
comparison with double dosimetry algorithms, are expected in the next months and a

Fig. 3. – Left: absorbed doses in the eye lens per KAP; Right: Absorbed doses in the eye lens per
KAP as a function of the operator distance from the X-ray beam axis —for the PA projection.
(L = left eye, R = right eye)
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sensitivity study though to overcome the intrinsic rigidity of the model (changing ener-
gies, position, adding shielding, etc . . .) will be performed with the objective of extending
the information available for interventional radiology. Moreover, further measurements
in hospital, employing APD, that could supply important values that could be directly
compared with the Monte Carlo results, and could give a personalized feedback to the
operator emphasizing the effectiveness of a specific training in radiation protection, are
foreseen in the next future.
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