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Summary. — The Sun is a quite active star, where still enigmatic phenomena
characterize its life. This one is modulated at large scales by a remarkable degree of
order (11-yr cycle and other superimposed cycles) even if the regenerating convective
source of the whole magnetic activity is characterized by a chaotic and turbulent
behavior. Several aspects of the solar magnetic activity are still not completely un-
derstood, such as the time-length of cycles, the dependency of the activity on the
latitude, the actual role of the tachocline with the exact location of the dynamo
regenerating sources. Here the solar dynamo problem is reviewed in the light of
recent developments in theories and observations. In particular, global spherical
simulations of convective dynamos and numerical experiments on Parker dynamo
waves will be discussed. This latter are recently drawing a possible way for an uni-
tary view of both large-scale and small-scale dynamo, contrary to the conventional
theory that considers these as complementary approaches of the same problem: the
astrophysical magnetism.

1. – Introduction

Since the pioneering Hale’s work(1908) [1], we have learned that solar magnetism
controls and generates many manifestations of solar activity. Stellar magnetism is more
accessible in solar observations than in other cool stars, considering also the incoming
Parker Probe and Solar Orbiter missions that will give very valuable informations regard-
ing our star and its activity in very close future. Solar magnetic activity is characterized
by wide range of temporal and spacial scales encompassing events like solar flares and
coronal mass ejections (CMEs), lasting minutes, to long periods on which the basic 11-yr
activity cycle (22-yr magnetic cycle) is modulated.

Solar activity shows a cyclic behavior revealed by the butterfly diagram, where a
butterfly sunspot pattern, is repeated every ∼11 yr. The cycle is irregular in the period, in
amplitude because of long term modulations, in rise speed since strong cycles peak early
than weak cycles, with other irregularities regarding the field parity like the not perfect
synchrony in polarity switching between the hemispheres, a north-south asymmetry etc.

Along the path of solar magnetism knowledges, we passed through hurdles, like Cowl-
ing’s antidynamo theorem (1933) then masterfully overcame by Parker (1955) [2], and
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periods of great dynamism, like after the first observations of subsurface structures pro-
vided by helioseismology. This revealed the tachocline, a thin shear layer below the con-
vection zone (CZ), then considered fundamental for solar dynamos. Currently a great
impetus is coming out from recent observations extended to other cool stars, revealing
that the activity-rotation correlation (proxy for the behavior of the dynamo) is the same
for both partly and fully convective stars [3]. This finding suggests that the tachocline,
very likely absent in fully convective stars, is not a vital ingredient for solar-like dynamos
as it has been thought so far. Moreover, numerical experiments of fully convective stars
are showing cycles and other solar features without a tachocline [4].

An other important issue, recently considered [5] concerns the classical approach that
proposes large-scale dynamo and small-scale dynamo as complementary theories to study
astrophysical dynamos. This enduring approach arises from observing that astrophysical
magnetic fields are correlated on spatial and temporal scales far exceeding that of the
underlying fluid motions. A typical example is the solar cycle.

In this manuscript, after a brief overview of observational constrains, recent advances
in numerical modeling of solar dynamo will be discussed. In fact, although numerical
models suffer of several limitations like the not ability to reach the extreme dynamical
ranges, which are instead typical in solar and stellar dynamics, they are giving important
insights into the nature of the interaction of turbulence, shear flows and magnetic fields,
which is fundamental for a complete understanding of solar and stellar magnetic dynamos.

2. – Observational Constrains

The most relevant observations we have are the time series of surface magnetic and
velocity fields provided by SDO and SOHO. These allow to study solar magnetic field on
time scales from minutes to decades, starting from the 23th cycle. Magnetograms pro-
vided by Mount Wilson and Wilcox observatory allow to extent records back to the 21st

cycle, though within reduced resolution. Moreover, indirect measurements of cosmogenic
radioisotopes allow to extent our knowledge of solar activity back to over 9600 yr.

Solar magnetism is generated and sustained by plasma motion, whose observations
provide important constrains for dynamo modeling [6]. The interplay of convection and
rotation, in the most outer shell of the sun, generates differential rotation (DR) and
meridional circulation, which transport magnetic flux and angular momentum in CZ.
The helioseismology shows latitudinal shear larger than the radial one, the latter being
larger in the tachocline and in the near-surface layer. Time variations of surface DR
(torsional oscillations) are revealed as pattern of zonal flow bands migrating towards the
equator at low latitudes and poleward at high latitudes. While their sensitivity to the
magnetic activity is fairly accepted, their action on magnetic field is less evident since
their small amplitude. Finally, meridional motion is measured on solar surface with
poleward component, while its subsurface profile is still not very well established [6, 7].

The most important constraints for solar dynamo modeling are related to sunspot
eruptions which show well defined roles for emergence latitudes, field parity and a basic
cycle with long-time modulations. The butterfly diagram, where sunspots are depicted
with their emergence latitudes as the cycle progresses, efficiently summarizes the most
relevant sunspots features. In particular it shows the emergence latitudes range, about
from 35◦ to 8◦, with equatorial migration, wings overlapping [8] and long term modu-
lations. Moreover, models and simulations need to explain the emergence of sunspots
that generally appear in pairs of opposite polarity following Hale’s law, with leading spot
slightly closer to the equator (Joy’s law). Theory has to explain the revealed correlation



ATTRACTED BY THE FASCINATING MAGNETISM OF THE SUN 3

between polar field, open flux and strength of the next cycle [9] considering also a recent
find regarding the correlation of magnetic helicity flux measured on hemispheres during
a minimum and the strength of next maximum [10]. This correlation indicates that ac-
tivity in regions beyond the polar cap is relevant for the progression of solar dynamo.
It has been also suggested that the magnetic helicity expulsions by CMEs may play a
crucial role in modifying the global topology of coronal magnetic field [11,12].

3. – Solar Dynamo Modeling

Since the solar magnetic field shows a dual nature both chaotic at small scales and
orderly on global scale, it has be supposed the coexistence of two conceptually different
dynamos acting on different scales. More precisely, small-scale dynamo, operating in the
turbulent upper CZ, generates chaotic magnetic fluctuations evolving on solar surface
with little influence by global dynamics. While global dynamo, operating in the bulk
of CZ, is responsible of sun activity on global scale with sunspots eruptions manifesting
with well defined roles (periodicity, field parity, emergence location and orientation).
The current paradigm of large-scale dynamo involves two major components: Ω-effect,
describing the generation of toroidal magnetic fields by stretching any existing weak
poloidal field via DR, and α-effect, i.e. generation of poloidal magnetic field due to the
cumulative action of many small-scale cyclonic turbulent motions in the CZ [2] or/and
to the breakup and reconnection of mostly toroidal fields that emerge as active regions
(Babcock-Leighton model). There are several dynamo models in the scientific literature
[13-15]. Here we limit ourselves to the most recent and important results regarding solar
dynamo.

3.1. Global models. – Among global dynamo models, flux transport models are very
popular. They acknowledge the Babcock-Leighton model as progenitor, where the merid-
ional circulation is a fundamental ingredient that, being poleward in outer CZ and
equator-ward above the core-envelope interface, transports magnetic field as an advection
belt. These models produce a magnetic flux behavior suitable to explain the solar sur-
face observations [16]. In spite the important contributions this models are giving, they
suffer of some limitations. They are, in fact, kinematic models where the prescribed ve-
locity is not completely probed and they necessarily contain parametrization of different
processes.

Probably more realistic models are global 3D convective dynamo simulations. Several
groups have developed magneto-convection models, following the work of Gilman(1983)
[17] and Glatzmaier(1985) [18], who found cyclic solutions with anti-solar (i.e. poleward)
migration of toroidal magnetic flux. Then, numerical models of convective dynamos have
been proposed employing different codes: Anelastic Spherical Harmonic (ASH) code [19],
Eulag MHD code [20], PENCIL code [21], etc. These have shown cycles and the correct
toroidal magnetic flux migration. They are validated by an international benchmark [22].
Recent simulations of ASH code with high resolution have shown solar-like rotation.
These simulations employ a fixed-background stellar structure, solar mass and luminosity,
rotating at 3 times the solar rate [23]. There, the magnetic field dynamics is characterized
by wreath structures of magnetic flux. In fact, the toroidal field is organized in almost
broad ribbons and tubes, which extend essentially along the toroidal direction. Moreover,
the wreaths undergo to a poleward migration at high latitudes and equatorial migration
at low latitudes during the cycle as consequence of the DR quenching of the Lorentz
force. In addition, thanks to a suitable density stratification and sufficiently low Prandtl
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numbers (viscosity/diffusivity), some of these simulations have produced grand minima,
where the system fails to fully reverse its polarity. The occurrence of these minima is
very likely due to an interplay of symmetric and antisymmetric solutions.

Other important results have been achieved using Eulag MHD code [24], making
magneto-convection simulations in a spherical shell with solar-like aspect ratio, a back-
ground stellar structure with rotation and luminosity ranges including solar values. These
simulations reproduce 11-yr cycle, equatorial propagation of large-scale magnetic field,
solar-like DR, large-scale axisymmetric magnetic field at the CZ bottom.

These global magnetohydrodynamics (MHD) simulations, even in the limitation due
to an insufficient resolution to reliably describe solar dynamo, offer the advantage of not
needing to parametrize the influence of rotation and magnetic field on turbulence and
convection, albeit they contain parametrization of all processes acting on sub-grid scales.

3.2. Local models. – MHD numerical simulations of dynamo mechanism in local ap-
proximation have the advantage to reach higher dynamical ranges than the global models,
hence allowing to study with more details the turbulent features concurring in develop-
ing a large-scale magnetic field. Within this approach we have investigated the limits
of the mean-field dynamo theory (MFDT) [25]. This is a theory of filtered equations,
taking the advantage that filtering turns equations with rapidly varying coefficients into
equations with smoothed coefficients, the latter being much more easy to solve than the
former. Moreover, the filtered equations are free of the antidynamo theorem. According
with this procedure, the rapidly fluctuating part of the underlying turbulence is filtered
out, and this aspect is relevant, considering that in the astrophysical systems the source
of the dynamo lies on small-scale turbulence. Hence, testing the underlying assumption
of this theory, namely that the solutions of the filtered equations are equal to the filtered
solutions of the full equations, is very important. We made a numerical investigation to
address this issue [5]. To establish a relationship between filtered solutions of the full
equations and solutions of the filtered equations, hence solution of the MFDT, we solve
the full equations and we filter these solutions, where the filter is a spatial average.

Nigro et al [5,26] solve the full induction equation considering a velocity with a large-
scale shear component and a fluctuating part at small scales produced by an overlapping
of turbulent helical eddies. This flow have three velocity components, but only depend on
two co-ordinates, x and y, say. Because of the invariance in the z-direction, the induction
equation is separable with periodic solutions, i.e. B(x, y, z, t) = b(x, y, t) exp(ikzz).

The results show that all components, both at large and small scales, of the magnetic
field grow with the same growth rate that is determined by the small-scale turbulence.
A wave pattern is clear for high shear amplitude s and helicity H, while for low s
and H it is difficult to distinguish any wave in the solutions (Fig.1). The transition
between a dynamics where solutions show clearly waves and one where waves are not
evident is not sharp, i.e. it is not possible to actually define an exact threshold. For
intermediate s values we can roughly see a pattern resembling waves. These have led to
suppose that may exist a wave component even in those solutions where wave pattern
is not clearly observed. A likely wave component can be captured by making the (x, y)-
Fourier transformation of the magnetic-field x-component, if this is a wave it should be
Akx(y, t)sin(kzz)+Bkx(y, t)cos(kzz) with Akx and Bkx lying on a circle during the time
for a given y (Fig.2). We find that even in the solutions with low s and H, a wave
component exists at large scale (small kx), but this is not shown in the solutions with
the all components, since the wave component is overwhelmed by small-scale turbulence.
When s is large enough, turbulence is suppressed by the shear, and the wave component
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Fig. 1. – For decreasing shear < Bx(x, y, Lz/2, time >x shows a less evident wave pattern.

is clear. Computing the period of the waves, it turns out to be comparable with the
characteristic time of Parker dynamo waves, hence showing the accuracy of the MFDT
with regard to this large-scale component. Since all components of the solution have
the same growth rate, which is roughly equal to the eddy-turn-over time, the dynamo
transition seems to be lead by small-scale turbulence that is instead filtered out in MFDT.
We observe that the phase coherency holding in time is the only valid criterium to

discriminate the large-scale dynamo solution, as described by the MFDT and found in our
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Fig. 2. – Phase diagrams: Ak versus Bk as defined in the text. The large-scale component
remains coherent during the time even for the solutions that do not show a clear wave pattern.
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simulations at large scale, from the rest of the solution, which remains incoherent during
the time. For such a reason one possible definition of the large-scale dynamo is one that
considers this coherence in time at large-scale, rather then one that relies only on the large
spatial-scale concept alone. After all, performing Fourier transformations of the MHD
equations describing dynamo systems, it turns out that each Fourier mode is coupled
with all the other ones. This makes in principle difficult the validity of the spectral
non-locality assumption considered in the scale-separation, which is the cornerstone of
the MFDT. Finally, last but not least, solar observations reveal magnetic structures on
multiple scales and often the strongest fields have been found on small-scale structures.

Considering the difficulty to infer observational constrains of subsurface magnetic
fields, models and simulations are fundamental to understand how the dynamo mecha-
nism actually works to produce the solar magnetic field we see. They are giving important
contributions, but many problems are still open. We do not know what set the period
of solar basic cycle and the source of its modulations, why sunspots emerge only below
about 40 degrees, how actually they are generated considering, in particular, that any
3D MHD dynamo simulation fails to produce self-consistently sunspots. Hopefully, in
the next future we will answer at some of these questions, thanks also to incoming space
missions, but still many efforts are needed.
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