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Summary. — I outline the first steps in the process of describing nuclear ground
states with an expansion around two-body unitarity. At leading order, the effective
field theory displays discrete scale invariance with a single dimensionful parameter,
which determines all ground-state and low-lying excitation energies. Sub-leading
corrections are smaller and perturbative. Results for light nuclei, large bosonic
clusters at unitarity, and nuclear matter are reported.

1. – Introduction

San Domenico is credited with the quote that “We must sow the seed, not hoard it”.
Next door to his resting place, I indulged in my favorite proselytism, that of effective
field theories (EFTs).

The picture that EFT offers of nature is more akin to neo-impressionism than to
the painting, which I suppose depicted San Domenico, under which we spoke at this
conference. At a resolution scale M−1

lo , we do not need, and do not depict, details at much
shorter range M−1

hi � M−1
lo . It is enough that we consider the most general dynamics of

the appropriate degrees of freedom at M−1
lo , constrained only by the known symmetries.

Dynamics at distances shorter than M−1
hi is encapsulated in the interaction strengths.

The S matrix—from which observables can be extracted—is obtained as a systematic
expansion in the small ratio Mlo/Mhi. This paradigm is useful not only when probing
deviations from the Standard Model of particle physics, where the shorter-distance theory
is unknown, but also when the underlying theory is difficult to solve, such as the QCD
behind nuclear physics.

EFT has been applied to nuclear physics for more than 25 years now—for a review,
see Ref. [1]. Most work has revolved around a particular EFT, Chiral EFT. “Chiral
potentials” collecting some Feynman diagrams have been used as input to “ab initio”
methods for the solution of the Schrödinger equation, with considerable phenomenological
success. Unfortunately, this success has usually relied on high orders in the expansion,
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where the large number of parameters obscures the physics that should have emerged
cleanly at leading order (LO). Moreover, most calculations compromise one of the pillars
that sustains EFT, renormalization-group (RG) invariance.

RG invariance is necessary to free a hadronic theory from extraneous assumptions
about the QCD dynamics. It was the effort to understand the challenges of renormaliz-
ing Chiral EFT that originally motivated a simpler EFT, Pionless EFT. Chiral EFT is
formulated in terms of pions and the lowest nucleon excitations, in addition to nucleons—
all other degrees of freedom are “integrated out”. In Pionless EFT, we focus on an Mlo

small enough for even pions to be integrated out, contact interactions among nonrela-
tivistic nucleons being all that remains. For over two decades now, Pionless EFT has
been applied to nuclear and atomic systems with great success and renormalizability.

From the get-go it was understood that the usefulness of Pionless EFT stemmed from
the existence of shallow bound states such as the deuteron. “Shallow” here means a
state with size—measured in the two-body case by the scattering length—much larger
than the range of the underlying potential. The new development, which I elaborate
upon below, is the realization [2] that a good starting point for the EFT expansion is
the unitarity limit of an infinite scattering length. In this case, at LO the two-body
system is invariant under scale transformations, while properties of larger systems are
determined predominantly by a single parameter associated with discrete scale invariance.
We are starting to explore the extent to which nuclear physics can be described in a first
approximation by this one parameter, with everything else accounted for perturbatively.

2. – Pionless EFT around unitarity

For distances M−1
lo much larger than the range of the interaction—set by the in-

verse of the pion mass and itself much larger than the inverse nucleon mass mN—the
only relevant degrees of freedom are nucleons, encoded in a color-singlet, isospin-doublet,
two-component spinor field. Lorentz invariance can be implemented through an Mlo/mN

expansion, expected to converge faster than the Mlo/Mhi expansion. Gauge invariance
under the Ue(1) of electromagnetism is incorporated in the usual way, namely by us-
ing electromagnetic covariant derivatives and field strength. Violations of parity, time
reversal, and baryon number amount to additional, very quickly convergent Mlo/Mvi

expansions, where Mvi represents the high-energy scales associated with the breaking of
these symmetries.

Because relatively little specific to QCD remains in this EFT, essentially the same
theory applies to neutral atoms at distances beyond the so-called “Van der Waals length”,
which sets the scale of the Van der Waals potential for a particular atomic species. A
spinless atom such as 4He is represented by a scalar field, but otherwise the structure of
the theory is very close to Pionless EFT in channels where nucleons are not restricted by
the exclusion principle. With some abuse of language, I refer to both theories as “Pionless
EFT” and to either nucleons or bosonic atoms as “particles” of mass m, represented by
a field ψ of canonical dimension 3/2.

The most general Lagrangian contains, in addition to particle kinetic terms, all local
interactions with an even number of particle fields. Particle-antiparticle loops are short-
range effects that can be absorbed in interaction strengths, so that the theory splits into
sectors of definite particle number A. Interactions with 2A fields give rise to A-body
potentials represented by Dirac delta functions and its derivatives. The S matrix can
be obtained by solving the Schrödinger equation, or one of its many-body variants, with
these potentials.
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The organizational principle to order interactions according to their importance to
observables—“power counting”—depends on how the interaction strengths scale with
Mlo and Mhi. When all interaction strengths scale with inverse powers of Mhi according
to their canonical dimension, the EFT is fully perturbative and thus contains no bound
states within its regime of validity set by Mhi. In particular, few-body forces come from
operators with larger number of fields and thus higher canonical dimension, so they are
highly suppressed in comparison with two-body forces. In contrast, in a situation like
nuclear physics where there are bound states and resonances at low energies, interac-
tion strengths must scale with some inverse powers of Mlo. One of the surprises is the
importance of a three-body force. A thorough discussion of Pionless EFT with original
references can be found Ref. [1].

For nuclei as well as 4He atomic clusters, the A = 3, 4 ground states are considerably
deeper than the A = 2 ground state, while still larger than the range of the potential. We
have thus proposed [2] that as far as the physics of nuclear ground states is concerned,
we should take the A = 2 system at LO to be in the so-called unitarity limit, where the
two-body binding energy B2 = 0 or, alternatively, the inverse two-body scattering length
a−1
2 = 0. For some atomic systems, this limit can be achieved by dialing an external

magnetic field—a “Feshbach resonance”. A possible explanation for the large scattering
lengths in the nuclear case is a Feshbach-like resonance generated by variation of the
quark masses [3]. Incidentally, Pionless EFT can be matched to present-day lattice QCD
simulations of light systems at unphysically large quark masses, and then used with ab
initio methods to predict larger systems [4]—but that is a topic for another talk.

3. – Potential, regularization, and renormalization

Around unitarity there must exist an LO two-body contact interaction with just
enough attraction to bring a bound state to the verge of existence. There are no im-
portant two-body parameters, which appear only at sub-leading orders. The scale Mlo

is identified with the typical nucleon binding momentum in A > 2 ground states, and
must arise through a few-body force. What additional interactions appear at leading
and higher orders is not immediately clear, because power counting in the presence of
the fine tuning necessary to produce shallow states goes beyond dimensional analysis.
Renormalization provides a useful tool to infer the minimum acceptable power of M−1

lo

for a given interaction.
The quantum nature of the problem materializes in diagrams with loops, which in Pi-

onless EFT are all generated by the solution of the Schrödinger equation. Loop diagrams
are sensitive to high momenta and require regularization. An additional dimensionful
quantity, the regulator Λ, cuts off virtual momenta. Before renormalization, it appears
explicitly through powers of Λ/Mlo, which threaten the Mlo/Mhi expansion. The reg-
ulator represents an infinite number of short-range interactions correlated by the same
parameter Λ. In a model, such a correlation is just part of the dynamical assumptions and
usually no attempt is made to remove Λ from observables. The regulator is interpreted
as a physical form factor.

In contrast, in an EFT, all allowed interactions, which build up form factors and ev-
erything else, are already present. For these interactions to be model independent, their
strengths must be correlated by the underlying physics, not the ad hoc Λ. Renormal-
ization is the procedure that removes the dependence on the arbitrary regulator from
observables and guarantees that parameters determined by the underlying dynamics are
present instead. A power counting must ensure RG invariance at each order in the
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Mlo/Mhi expansion, up to terms of size comparable to higher-order terms. This can be
achieved by taking Λ >∼Mhi since after renormalization only negative powers of Λ/Mlo

remain in observables. The regulator determines the “model space” where the EFT cal-
culation is performed. Just as in standard many-body ab initio calculations, we want the
limit of a large model space to be well defined so that when the cutoff is large enough
results are “converged”.

By now many different A ≤ 4 calculations—for a review, see Ref. [5]—have indicated
that the LO potential at two-body unitarity is

V (0) =
4π

m

⎡
⎣C

(0)
0 (Λ)

∑
{ij}

δ
(3)
Λ (�rij) + 4πD

(0)
0 (Λ)

∑
{ijk}

δ
(3)
Λ (�rij)δ

(3)
Λ (�rjk)

⎤
⎦ ,(1)

where {ij} and {ijk} denote doublets and triplets, and δ
(3)
Λ (�r) is a regularization of

the three-dimensional delta function, that is, a smearing over distances r <∼Λ−1 with
limΛ→∞ δ

(3)
Λ (�r) = δ(3)(�r). The interaction strengths C

(0)
0 (Λ) and D

(0)
0 (Λ) are functions

of the cutoff Λ that ensure the A = 2, 3 binding energies are regulator independent [6,7]:

C
(0)
0 (Λ) ∝ − 1

Λ
, D

(0)
0 (Λ) ∝ 1

Λ4

sin
(
s0 ln(Λ/Λ�) − tan−1(s−1

0 )
)

sin
(
s0 ln(Λ/Λ�) + tan−1(s−1

0 )
) .(2)

where the (dimensionless) proportionality factors depend on the chosen regularization
and s0 � 1.00624. For the two-body binding energy to vanish at LO, B

(0)
2 = 0, C

(0)
0 must

contain no physical parameter. In contrast, D
(0)
0 is characterized by the dimensionful

parameter Λ�, which determines the A = 3 ground-state binding energy, B3. The three-
body force with form (2) is needed for renormalization [7], that is, to prevent a collapse
under the attractive two-body contact when Λ increases [8].

At next-to-leading order (NLO), there is a two-body potential with two derivatives
that accounts for energy dependence, that is, the effective range. The most important
electromagnetic interaction for nucleons is the Coulomb potential, which is nonpertur-
bative only at momenta <∼ αmN/2 (where α is the fine-structure constant). Since this
quantity is numerically not very different from |a−1

2 | in the two-nucleon S waves, in
ground states Coulomb can also be treated as a sub-leading effect [9]. Conservatively, we
can assign a−1

2 and Coulomb effects to NLO. Quark-mass difference effects do not appear
before next-to-next-to-leading order (N2LO). The first momentum-dependent three-body
potential enters at N2LO as well. It is currently unknown at which sub-leading order
the four-body potential appears for the first time. In order to retain RG invariance,
sub-leading potentials must be treated in distorted-wave perturbation theory.

4. – Discrete scale invariance

The interaction strengths C
(0)
0 (Λ) and D

(0)
0 (Λ) represent an RG non-trivial fixed point

[6] and limit cycle [7], respectively. It is not difficult to show (see, for example, Ref. [5])
that at LO the theory possesses a discrete scale invariance (DSI). The A = 2 system is
in fact invariant under continuous scale transformations where position, time, regulator
and field transform as, respectively,

r → αr, t/m → α2t/m, Λ → α−1Λ, ψ → α−3/2ψ,(3)
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with a real parameter α > 0. However, the appearance for A ≥ 3 of Λ� breaks continuous
scale invariance down to a discrete subgroup with α → αn ≡ exp(nπ/s0), n an integer. At
sub-leading orders DSI is broken explicitly. Approximate DSI has two main consequences:

1. The LO ground-state energy of the A-body system is determined by Λ�. Eliminat-
ing the latter in favor of B3, we can write

B
(0)
A

A
= κA

B3

3
,(4)

where κA is a universal number—it depends on whether the particle is a boson or
a multi-state fermion, but different species of bosons or fermions taking on at least
three states have the same κAs. By construction κ2 = 0 and κ3 = 1.

2. For each A ≥ 3, excited states form at least one geometric tower above the ground
state with a spacing factor exp(−2nπ/s0) � 1/515. This is because DSI can be
satisfied if, as a consequence of Eq. (3), two levels n and n + l are related by
BA;n+l = α−2

l BA;n. The spectrum is cut off from below by Mhi and from above by
a−1
2 effects, which become important at low energies. For A = 3 there is one tower

of the famous Efimov states [10].

Thus, all states within the regime of validity of the EFT are determined at LO by
Λ�, with everything else smaller, perturbative corrections. How far can we go with this?

5. – A ≤ 4 systems

At LO we can solve the A = 3 Faddeev equation for the potential (1) with a sharp
momentum cutoff, while the NLO potential is treated in first-order distorted-wave ap-
proximation [2]. Triton and helion are degenerate at LO. Using the binding energy of
the former, Bt, to fix Λ�, we find for helion at NLO

B
(1)
h − Bt = −(0.92 ± 0.18) MeV,(5)

to be compared with the experimental value, −0.764 MeV. There is no excited triton
state which is bound, but we have recently shown using EFT that virtual states in nd
scattering become the triton excited states as the deuteron binding energy is decreased
[11]. The three-nucleon spectrum carries the footprints of DSI, and its perturbative
breaking improves agreement with experimental data.

Calculations for bosons at unitarity have shown that each Efimov state spawns two
A = 4 states [12]: one very near the A = 3 binding energy, the other about 4.6 times
deeper [13]—which translates to κ4 � 3.5 in Eq. (4). The same happens for four
nucleons at unitarity. Equation (4) means that there is an approximately linear cor-
relation between alpha-particle and triton binding energies as Λ� is varied. And, in-
deed, such correlation has long been known for phenomenological potentials, the “Tjon
line” [14]. Sub-leading effects introduce small departures from linearity. Solving the
Faddeev-Yakubovsky equation at LO with a Gaussian regulator and incorporating a−1

2

effects in perturbation theory at an incomplete NLO, we obtain [2]

B(0)
α = 39 ± 12, B(1,inc)

α = 29.5 ± 8.7 MeV,(6)
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Table I. – Binding energy per particle for A bosons at unitarity relative to the three-boson energy
per particle, κA defined in Eq. (4) [20].

A κA A κA A κA

4 3.5(1) 10 18.3(5) 30 38.8(1.0)
5 6.3(2) 12 21.9(6) 40 43.5(1.1)
6 8.9(2) 14 24.9(7) 50 46.8(1.2)
7 11.6(3) 16 27.4(7) 60 49.4(1.3)
8 14.2(4) 18 29.7(8)
9 16.3(4) 20 31.6(8)

to be compared with the experimental value, 28.4 MeV. The observed first-excited alpha
state is also recovered near the triton-nucleon threshold. An expansion around unitarity
clearly captures the basic elements of the four-nucleon system as well.

6. – A ≥ 5 systems

It is remarkable that light nuclei, at least, can be described by a systematic theory
with one parameter at LO. To check how well this works for larger systems we need to
calculate κA≥5 in Eq. (4), as well as the corresponding excited spectra.

The characteristic features of DSI have indeed been found in systems of A = 5, 6
bosons:

• Ground states satisfy the “generalized Tjon lines” embodied in Eq. (4) [15].

• Excited spectra exhibit a doubling each time A increases by 1 [16-19].

The ground-state energies for up to A = 60 bosons at unitarity have now been cal-
culated by solving the Schrödinger equation for the potential (1) with variational and
diffusion Monte Carlo methods and Gaussian regulators [20]. Selected values are shown
in Table I. It is seen that the κAs increase approximately linearly at small A [16], that
is, κA � 3(A − 2)2/A [15]. However, the growth tapers off, a behavior well fitted by a
“liquid-drop” formula,

κA�4 = κ
(
1 + ηA−1/3 + . . .

)
,(7)

with κ = 90 ± 10 and η = −1.7 ± 0.3, respectively, the dimensionless “volume” and
“surface” terms. The factor of � 90 is large but still well below the � 515 that provides
an upper bound for the EFT breakdown scale. Calculated radii confirm this saturation.
Qualitatively the same physics takes place for 4He atoms but the corresponding κAs
are larger, with an asymptotic value twice as large as at unitarity [21]. The apparent
importance of sub-leading effects [22] suggests that the 4He liquid might be outside the
EFT.

Unfortunately there are no similar calculations for nucleons. A hand-waving argument
suggests that they should display saturation as well. Since the number of triplets grows
faster than the number of doublets, the three-body force prevents the collapse for A ≥
3. For nucleons, the exclusion principle reduces the effects of the two-body S-wave
attraction for A ≥ 5, so we might expect smaller values for κA≥5. In fact, calculations of
A = 16, 40 nucleons without the unitarity expansion [23, 24] suggest that Pionless EFT
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might generate, if anything, too much saturation. Still, it is tantalizing that at least for
bosons the potential (1) gives rise to saturation that is qualitatively similar to the one
seen for nuclei.

7. – Nuclear matter

The previous results give us hope, but by no means certainty, that nuclear matter
around the saturation point is within the regime of validity of Pionless EFT. Results
from closely related models [25] are also encouraging.

We are thus led to speculate that DSI might be relevant, in which case the form of
the equation of state at LO must be [5, 26]

lim
A→∞

B
(0)
A (ρ)
A

= −
(

3π2

2

)2/3
ρ2/3

m
Υ

(
s0

3
ln

(
3π2ρ

2Λ3
�

))
,(8)

where ρ is the particle density and Υ is a (real) periodic function with period π. The
minimum of Eq. (8) describes a straight line in ρ2/3 under variation of Λ�, just as
the empirical “Coester line” [27]. The energy around the saturation density obtained in
models can also be recovered, if the derivatives of Υ at saturation are of O(1) as expected
from the absence of dimensionful parameters other than Λ�.

We can conclude that DSI is not inconsistent with the known properties of nuclear
matter at saturation. Stronger statements require an ab initio calculation of Υ.

8. – Conclusion

A nuclear EFT, when properly renormalized, represents the low-energy limit of QCD.
All interactions allowed by QCD symmetries must be included, with their importance
to observables ordered by a power counting. Interaction strengths can in principle be
matched to the results from lattice QCD, but for physical quark masses we presently
must rely on experimental input. The power counting ensures that at each order only a
few low-energy data are needed as input while the rest is predicted. In a successful EFT,
the leading order captures the essential physics, such as the existence of nuclear ground
states and saturation, with systematic improvements at higher orders.

Although Chiral EFT has received most attention in the nuclear community, the
“poster theory” is Pionless EFT. A consistent power counting has been developed and
led to a successful description of A ≤ 40 systems, although in some cases only LO
and a resummed NLO, which destroys RG invariance, have been examined. I reported
here on an elaboration of Pionless EFT designed for ground states, where the departure
from two-body unitarity is taken as a sub-leading effect. Two of the advantages of this
starting point are that at leading order: i) there is a single dimensionful parameter,
which determines all ground-states energies; and ii) discrete scale invariance is exact,
and determines the excitation spectrum.

We have seen evidence that A ≤ 4 nuclear systems are perturbatively close to the
unitarity limit: the ground and first-excited states are qualitatively reproduced at LO
and quantitatively already at NLO. Larger systems of unitary bosons display the telltale
signs of discrete scale invariance. Moreover, thanks to the three-body force, they saturate
similarly to 4He clusters and nuclei. I have also speculated on possible implications of
discrete scale invariance to nuclear matter. All results are encouraging, but still, this is
just the seed...
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