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Summary. — The breaking of the isospin symmetry is discussed from the point
of view of the nuclear shell-model. The accuracy of the theoretical framework is
demonstrated on the description of the isobaric multiplet splittings. The use of
phenomenological versus realistic interactions is discussed. We demonstrate the rel-
evance of the theoretical description for isospin-forbidden processes. The developed
formalism is important for the calculation of isospin-symmetry breaking corrections
to the weak-interaction process on nuclei, and it can provide missing information on
the structure of proton-rich nuclei relevant for astrophysics applications.

1. – Introduction

The isospin symmetry is a symmetry between a proton and a neutron (or between up
and down quarks at a quark level) with respect to the strong interaction. A nucleon is said
to be characterized by an isospin quantum number t=1/2, similar to an ordinary spin,
with neutron and proton being labeled by its projection t3= ±1/2, respectively. The three
components of the isospin operator, t̂, generate an isospin SU(2) algebra: [t̂j , t̂k] = iεjkl t̂l.
The total isospin operator for an A-nucleon system is T̂ =

∑A
k=1 t̂k, with T (T+1) and

(N−Z)/2 being eigenvalues of T̂2 and T̂3. A charge-independent Hamiltonian would
commute with T̂, giving rise to degenerate multiplets of states (Jπ, T ) in nuclei with the
same A and T3 = −T, . . . , T , called isobar analogue states (IAS).

The isospin symmetry is, however, an approximate symmetry. A dynamical breaking
of the isospin symmetry can explain the splittings of the isobaric multiplets, known also as
Coulomb displacement energies. In addition, modern accelerator facilities combined with
advanced detection systems provide nowadays extensive and accurate data on isospin-
forbidden decays, indicating that isospin is not a good quantum number anymore and
there is a certain amount of isospin mixing in nuclear states.

An accurate theoretical description of the isospin-symmetry breaking is important
not only for understanding the structure and decay of proton-rich nuclei. It is also
crucial for the evaluation of the nuclear-structure corrections to nuclear β-decay, such as
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superallowed Fermi 0+ → 0+ decays, serving for the tests of the Standard Model, as well
as it can be of help in applications to nuclear astrophysics.

At a nuclear level, the isospin symmetry is mainly broken by the Coulomb interaction
among protons and, to a minor extent, by the proton and neutron mass difference and the
presence of the charge-dependent (CD) forces of nuclear origin. Those nuclear causes can
be rooted to the u and d quark mass difference and electromagnetic interactions between
the quarks. Experimental evidence on the existence of CD forces of nuclear origin is
quite firm. First, it is well established that there are differences in the neutron-neutron,
proton-proton (with electromagnetic effects being subtracted) and neutron-proton 1S0

scattering length: the difference of ann and app is a signature of charge-symmetry breaking
of the strong NN force, while the even larger difference between anp and the average of
ann and app is known as the charge-independence breaking property [1].

Second, it turns out that the Coulomb force alone is not sufficient to explain the
binding energy differences in mirror nuclei, starting from the lightest 3H-3He case up to
heavy nuclei (the so-called Nolen-Schiffer anomaly [2]).

Henley and Miller [3] proposed to range two-nucleon forces into four classes according
to their isospin character. Class I are charge-independent forces {1, t̂(1)·t̂(2)}; class
II are forces which break the charge-independence, but preserve the charge-symmetry,
{t̂3(1)t̂3(2)}; class III are charge-symmetry breaking forces, which vanish in the neutron-
proton system, {t̂3(1)+t̂3(2)}; and class IV are forces which do not conserve the isospin of
a two-nucleon system: {t̂(1)×t̂(2), t̂3(1)−t̂3(2)}. The following hierarchy is expected [5]:
VI>VII>VIII>VIV . It is important to note that already class II and III forces do violate
the isospin symmetry in a many-body system (A>2). For example, the ordinary Coulomb
interaction between protons contains terms of classes I, II and III.

Isospin-symmetry breaking NN forces have been successfully constructed and un-
derstood both with meson-exchange models [1, 4], as well as within the modern chiral
effective field theory (χ-EFT) [5-7] with proper identification of various contributions.
Moreover, CD three-nucleon forces have been explored in the latter approach (e.g. [6]
and refs therein).

Ab-initio calculations with CD forces successfully reproduce binding-energy differ-
ences in light mirror nuclei and the expected amount of isospin-mixing in 8Be [8]. To solve
the nuclear many-body problem for heavier nuclei one still needs an approach requiring
effective CD interactions. Numerous investigations have been recently performed within
various theoretical frameworks aimed at a reliable description of the isospin-symmetry
breaking: state-of-the-art shell-model calculations [9, 10, 12, 11, 13], including its no-core
realization [14] and continuum-coupling extension [15], mean-field approaches and be-
yond (e.g. [16]), relativistic RPA [17], JT projected nuclear DFT [18] and others. Many
of these approaches applied their results to the calculation of the isospin-symmetry break-
ing correction to superallowed 0+ → 0+ β-decay, providing an extensive, but diverging
set of results.

The shell model, being a symmetry-conserving approach, is particularly adequate for
searches of tiny isospin-symmetry breaking effects in low-energy states and transitions.
Below I will focus on some recent progress obtained within the shell model.

2. – Isospin-nonconserving shell-model Hamiltonians

The starting point is a non-relativistic Hamiltonian for point-like nucleons contain-
ing nucleon kinetic energies and effective NN interactions (only two-body interactions
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are considered here). Being interested in the low-energy structure of medium-mass nu-
clei, we consider only valence nucleons in a restricted (valence) space beyond a given
closed-shell core. Adding and subtracting a one-body spherically-symmetric poten-
tial (e.g., a harmonic-oscillator potential), we can rewrite the Hamiltonian as a sum
of an independent-particle Hamiltonian (Ĥ0) and a residual interaction (V̂ ): ĤΨ ≡
(Ĥ0 + V̂ )Ψ = EΨ. The eigenstates Ψp are searched for in terms of Φk, an orthonormal
set of eigenfunctions of Ĥ0: Ψp =

∑
k CpkΦk. The eigenproblem for Ĥ is thus reduced to

diagonalization of the energy matrix 〈Φk′ |Ĥ|Φk〉, computed from single-particle energies
of valence-space orbitals, εi, and two-body matrix elements (TBMEs) of the residual
interaction V̂ . As a result, we get eigenvalues Ep and the corresponding sets of expan-
sion coefficients {Cpk}. For a rotational invariant and charge-independent Hamiltonian
Ĥ, the eigenstates are characterized by the angular momentum and isospin quantum
numbers (JMTT3), forming thus degenerate isospin multiplets.

Consider now an isospin-nonconserving (INC) term, comprising the two-body Coulomb
interaction and effective CD NN forces of classes II and III (no class IV forces are con-
sidered). Such an operator is a sum of an isoscalar, an isovector and an isotensor term:

V̂INC = V̂C + V̂CD =
∑

k=0,1,2

V̂
(k)
INC , where

⎧⎪⎨
⎪⎩

V̂
(0)
INC = (vpp + vnn + vT=1

np )/3
V̂

(1)
INC = vpp − vnn

V̂
(2)
INC = (vpp + vnn)/2 − vT=1

np

To describe the Coulomb effects of the core, we add an isovector one-body term, which
gives rise to the so-called isovector single-particle energies, ε̃i=εpi−εni. In first-order
perturbation theory, the splitting of the isobaric multiplets is expressed by a quadratic
polynomial in T3:

〈ΨTT3 |V̂INC |ΨTT3〉 = E(0)(α, T ) + E(1)(α, T )T3 + E(2)(α, T )
[
3T 2

3 − T (T + 1)
]

This dependence is known as the isobaric-multiplet mass equation (IMME) [19]

M(α, T, T3) = a(α, T ) + b(α, T )T3 + c(α, T )T 2
3 ,

where α = (A, Jπ, . . .), M is a mass excess. Experimental a, b, c coefficients can be
deduced from available data on nuclear masses and spectra up to about A = 71 [20,21].

Ideally, one would derive an effective Hamiltonian for valence-space calculations from
a bare NN potential via a certain renormalization procedure [22]. With two-nucleon
interactions only, the resulting effective interaction suffers from serious deficiencies [23].
An efficient way to remove them is to fit all TBMEs of the residual interaction or some
components of the interaction (the monopole term) to selected experimental spectra
of nuclei from a given model space. The Coulomb contribution is usually evaluated and
subtracted from the data. Resulting phenomenological (charge-independent) interactions
are therefore called realistic and they can provide high accuracy, e.g., USD [24] in the sd
shell, KB3G [25] or GXPF1A [26] in the pf shell.

Knowing this difficulty, a direct way to construct an accurate INC Hamiltonian would
be to add V̂INC and ε̃i to a well-established charge-independent Hamiltonian. One needs
thus at least two extra parameters, which govern isovector and isotensor components
of an effective term of nuclear origin, V̂CD. Those parameters can be fixed by a fit
of theoretical isovector and isotensor contributions to experimentally deduced b and c
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Fig. 1. – Experimental [20,28] and theoretical IMME b and c coefficients for the lowest T = 1/2
qnd T = 1 multiplets, respectively, in sd and pf shell. The sd-shell results are quoted from
ref. [11], while pf -shell calculations have been performed with GX1Acd interaction [27].

IMME coefficients. This strategy was proposed in ref. [9], and re-examined recently for
sd-shell [10, 11] and pf -shell and heavier nuclei [13]. Various forms for V̂CD have been
explored. The use of either a ρ-exchange Yukawa potential (with a scaled meson mass)
or the T = 1 term of the isospin-conserving Hamiltonian in the isovector and isotensor
channels leads to similar quality fits [9,11]. Figure 1 shows the b coefficients for doublets
and c coefficients from triplets as obtained from such phenomenological interactions in
sd and pf shell nuclei, in comparison with the experimental values. The theory well
reproduces a visible staggering of these b and c coefficients as a function of A [11]. More
realistic forms of V̂CD usually worsen the fit [10].

In ref. [13], another strategy has been chosen to model VCD: two J = 0, T = 1
TBMEs in the f7/2-orbital have been added and found to be sufficient to reproduce the
staggering behavior of b and c coefficients.

The idea of modeling CD forces of nuclear origin by a few TBMEs was originally pro-
posed in the description of the differences in the excitation energies of isobaric multiplets
relative to the lowest in energy multiplet. Those quantities are known as mirror energy
differences (MEDs) and triplet energy differences in T = 1 multiplets. MEDs considered
as a function of J along an excitation band can bring detailed information on nuclear
structure effects. A vary accurate description has been achieved [12, 29] in the pf shell
by a phenomenological parameterization of various physical effects, such as nucleon pair
alignment, changes in nuclear radius (or deformation), electromagnetic corrections to the
single-particle energies, with V̂CD being modeled by a few J = 0 TBMEs in isovector
and isotensor channels. Moreover, MEDs have been shown [30] to depend linearly on the
difference of neutron and proton radii, known as neutron skin, and that they strongly
correlate with the s1/2-orbital occupation.

In general, low-l orbitals, especially s1/2-orbitals, are characterized by an extended
radius and play thus a special role. In particular, it was noted that MEDs of states having
higher occupation of s1/2 are unusually large (Thomas-Erhman shift [31]). Attempts to
account for this effect include an additional shift of ε̃(s1/2) (e.g. ref. [32]) or some specific
quenching of the TBMEs involving the s1/2 orbital [33].
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Recent progress in the NN interaction and many-body theories has led to the ap-
pearance of first microscopic effective CD Hamiltonians. First large-scale calculations for
proton-rich nuclei in extended sdf7/2p3/2 and pfg9/2 model spaces with effective NN+3N
Hamiltonians, constructed on the basis of the renormalized χ-EFT potential, have been
reported in ref. [34]. In ref. [35], similarly, microscopic CD pf -shell Hamltonians have
been constructed from the two-body CD-Bonn, AV18 and chiral N3LO potentials. Com-
parison of the IMME c coefficients as a function of J in selected pf shell nuclei with
experimental data indicates too strong contribution of the charge-independence breaking
terms of nuclear origin. Further theoretical investigations with microscopic CD interac-
tions would be of great interest.

3. – Isospin-forbidden decay processes

In the shell model, isospin impurities come from the mixing of states of the same spin
and parity, but different isospin. In the simplest case of a 2-level mixing, the admixture
of the one state into the other, α, to first order is proportional to the ratio of the isospin-
mixing matrix element and the energy difference between the two states: α ∼ 〈V 〉/ΔE.
As the energy difference is rather difficult to predict theoretically, especially for an odd-
odd nucleus, it would be desirable if the theory could predict the value of the mixing
matrix element, 〈V 〉. These mixing matrix elements depend strongly on the structure of
the states considered and, therefore, require systematic calculations.

Experimentally, the only model-independent way to get direct information on the
amount of the isospin-mixing is provided by the Fermi β-decay. Since the Fermi operator
is given by the T̂± components of the isospin operator, its matrix element between IAS
is known to be |M0

F | = |〈T, T3 ± 1|T̂±|TT3〉| =
√

(T + T3)(T − T3 + 1). An observed
depletion of the Fermi strength in the IAS or an isospin-forbidden Fermi transition to a
non-analogue state would immediately report an amount of isospin-mixing. In addition,
if a T3 > 0 nucleus β± decays, then the mixing is dominantly present in the parent
(daughter) nucleus and, inversely for a T3 < 0 nucleus. Relatively few cases of pure
Fermi non-analogue 0+ → 0+ transitions are known [36]. In the case of Jπ → Jπ

(J �= 0) transitions, a separation of the Gamow-Teller component is required. This is an
experimental challenge, bringing interesting information on the isospin impurity [37,38].

Observation of other isospin-forbidden decays requires theoretical calculations of cor-
responding nuclear processes for extraction of the mixing probability. Isospin selection
rules for electromagnetic operators may be of use. For example, the internal part of the
E1-operator is, in lowest-order of the long wavelength approximation, of purely isovector
character. Hence, E1 transitions between the states of the same isospin in N = Z nuclei
are forbidden by the isospin symmetry. The shell-model calculation of individual E1
transition rates is hampered by the fact that the model space should contain orbitals of
different parity which could also lead to a center-of-mass motion. Given that the center-
of-mass separation is only approximate, it would be difficult to give a precise estimation
of the E1 strength. Observed enhancements of E1 rates in N = Z nuclei or enhanced
asymmetries of mirror E1 transitions can be related to the giant isovector monopole
resonance [39]. Various possibilities to deduce the amount of the isospin mixing from
electromagnetic responses have been explored [40-44].

A novel way has been proposed recently to deduce isospin mixing from the β-delayed
pγ-emission [45]. As follows from the energy balance, the proton emission from the IAS
(Jπ, T ), populated in a β-decay of a T3 < 0 precursor, is forbidden by isospin symmetry
(see a schematic picture in fig. 2). Observation of such processes gives evidence of the
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Fig. 2. – Schematic picture of β-delayed proton(s)-gamma emission from the IAS.

isospin mixing, mainly, in the IAS which is surrounded by states of another isospin,
(Jπ, T − 1). A large amount of mixing can be deduced from the missing Fermi strength.
However, small amounts may be hidden by experimental uncertainties. If the angular
momentum l of the proton is uniquely defined, an experimentally measured branching
ratio of the proton to gamma decay of the IAS, IIAS

p /IIAS
γ can provide information on

the spectroscopic factor for an isospin-forbidden proton emission from the IAS, if we
supplement it by the theoretical electromagnetic width, ΓIAS

γ , and the single-particle
proton width, ΓIAS

sp , of the IAS:

SIAS
p =

ΓIAS
γ

ΓIAS
sp

IIAS
p

IIAS
γ

.(1)

If this admixture to the IAS comes from a closely-lying non-analogue state, Jπ, T − 1,
then calculating its spectroscopic factor, ST−1

p , within the shell model we can deduce
the amount of isospin mixing in the IAS: α2 = SIAS

p /ST−1
p . We remark that the same

procedure is applicable to isospin-forbidden 2p (shown in fig. 2) or α emission from the
IAS. In case of multiple transitions, one can analyze each of them separately and then
cross-check the values of α. If l of the transition is not uniquely defined, we cannot
unambiguously deduce spectroscopic factors, but we can still analyze the isospin mixing,
if a two-level mixing model is applicable.

4. – Isospin-symmetry breaking correction to 0+ → 0+ Fermi β-decay

The superallowed Fermi β-decay between 0+ IAS members is an important tool to
verify the symmetries underlying the Standard Model of particle physics [46]. The con-
stancy of the absolute Ft values of such transitions in various emitters would confirm
the Conserved Vector Current hypothesis. If it holds, then one can deduce from the Ft
value the vector coupling constant for this semi-leptonic decay, GV . Combining GV with
the data from the purely leptonic muon decay, one can determine the absolute value of
the Vud matrix element of the Cabibbo-Kobayasi-Maskawa matrix.

To get the absolute Ft value from the experimental half-life t1/2 of the transition and
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the decay Q value, one has to incorporate a few theoretical corrections [47]:

Ft0
+→0+ ≡ ft0

+→0+
(1 + δ′R)(1 + δNS − δC) =

K

|M0
F |2G2

V (1 + ΔR)
.(2)

Here K = 2π3h̄ ln 2(h̄c)6/(mec
2)5, while ΔR, δ′R, δNS are transition independent, transi-

tion dependent and nuclear-structure dependent radiative corrections and δC is the
isospin-symmetry breaking correction. It is defined as a deviation of the squared realistic
Fermi matrix element from its isospin-symmetry value |M0

F |: |MF |2 = |M0
F |2(1 − δC).

The estimation of δC requires a nuclear-structure model which can account for the broken
isospin symmetry. This is still a challenge for microscopic nuclear many-body theories.
Existing predictions from various theoretical approaches largely diverge ( [47, 48] and
refs therein). While ΔR provides the largest uncertainty to deduced |Vud|2, the largest
contribution to the Ft-value uncertainty (and limitation for the CVC tests) comes from
the uncertainty on δC , even when taken from a single approach.

The INC shell model is a well-suited tool for the δC calculation. Besides isospin-
symmetry breaking inside the model space, described in sect. 2, one has to replace
harmonic-oscillator radial wave functions by realistic spherically-symmetric wave func-
tions from a Woods-Saxon (WS) or a Hartree-Fock (HF) potential. All ingredients in-
volved in the calculations can be subjected to experimental verification from the data
on the IMME coefficients, proton and neutron separation energies and nuclear charge
radii. This opportunity greatly constrains the calculations and guaranties consistency
of the results [48]. In particular, the obtained theoretical uncertainty is mostly related
to the experimental uncertainty on the nuclear charge radii. There is still a dissension,
however, between WS and HF results [49] which should be addressed in further studies.

5. – Astrophysics applications

A precise description of isobaric multiplet splittings is important in astrophysics appli-
cations, in particular, in the context of nucleosynthesis after novae explosions and X-ray
bursts. From theoretical b coefficients and experimentally determined binding energy of
a neutron-rich mirror, one can predict masses of the proton-rich partner. These ideas
have been used, e.g. in refs. [50, 13], to map the proton drip-line towards 100Sn.

In addition, precise theoretical calculations of b coefficients can be used to estimate
the position of resonances, influencing radiative proton capture reaction rates [51,32].

6. – Conclusions

In summary, we reviewed current achievements of the nuclear shell model in the de-
scription of the isospin-symmetry breaking phenomena. While sd and pf shell model
spaces are well mastered and controlled, more efforts are needed for cross-shell CD in-
teractions (such as in the sdpf model space) and for studies of heavy nuclei. Important
applications to weak interaction processes and astrophysical issues are in progress. Ex-
perimental data on the spectroscopy of nuclei along the N = Z line and proton-rich
nuclei will be of help to constrain the models.
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