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Summary. — We perform a detailed analysis of the parameters of the Skyrme
SN2LO interaction. By mean of a covariance matrix analysis, we have been able
to provide error bars and build the complete covariance matrix. The latter will be
used in future applications to properly study the propagation of errors on nuclear
observables calculated with this pseudo-potential.

1. – Introduction

Nuclear Energy Density Functional (NEDF) theory is the only microscopic model
able to reproduce both ground state and excited state properties of atomic nuclei from
drip-line to drip-line and from light to super-heavy nuclei [1, 2]. Among the different
functionals, the ones generated by the Skyrme interaction [3] are among the most popular
and most successful in describing properties of atomic nuclei [4, 5].

Once the functional form is fixed, one needs to determine the value of the effective
parameters using some selected nuclear observables. The quality of the predictions made
with such a functional strongly depends on the accuracy of such an adjustment. In a
recent series of articles [6-8], the UNEDF collaboration [9] has explored the flexibility of
the standard Skyrme functional to understand whether the observed discrepancy with
experimental data may or may not be reabsorbed into the coupling constants of the
functional by using more refined fitting protocols. The outcome of their last article [8] is
that the Skyrme functional has reached its limits and it is mandatory to explore either
other functional forms or different many-body methods.

Inspired by the previous work of Refs. [10,11], we have extended the original Skyrme
pseudo-potential [3], including higher order momentum terms [12]. In Refs. [13, 14], we
have shown that such higher order terms mimic the physics of an effective range by
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including explicit contributions of higher order partial waves. In his original article [3],
Skyrme found that any finite range interaction can be expanded in momentum space and
that with the incorporation of only S and P waves, the description of nuclear data would
be satisfactory. However, he also mentioned in the same paper that the inclusion of the
D wave term might have a non negligible role in low-energy nuclear structure. Similar
conclusions have been also obtained in a more recent article [15] within the context of
Density Matrix Expansion.

In Ref. [16], we have been able to provide for the very first time a stable parametrisa-
tion of the extended Skyrme pseudo-potential, hereafter called SN2LO1, by performing
a fit on atomic nuclei with an improved version of Saclay-Lyon fitting protocol [17, 18].
In the present article, we aim at continuing the investigation, by performing a series
of statistical tests to quantify the goodness of the fit, but also to quantify error bars
on the parameters we have obtained.This aspect is very important for a future rigorous
treatment of errors. See Ref. [19] for more details.

The article is organised as follows: in Sec. 2, we briefly discuss the main feature of
the extended Skyrme pseudo-potential. In Sec. 3 we recall the fitting protocol used to fix
the parameters of the pseudo-potential, while in Sec. 4 we perform a rigorous statistical
analysis of the results. We present our conclusions in Sec. 5.

2. – Skyrme N2LO

The N2LO Skyrme pseudo-potential, as described in Refs. [10-12], is a generalisation
of the standard Skyrme interaction, corresponding to the expansion of a generic finite-
range interaction in powers of the relative momenta k,k′ up to the fourth order. It is
written as the sum of three terms: central, spin-orbit and density dependent [14]

(1) VN2LO = V C
N2LO + V LS

N1LO + V DD
N1LO .

The central term reads

V C
N2LO = t0(1 + x0Pσ) +

1
2
t1(1 + x1Pσ)(k2 + k′2) + t2(1 + x2Pσ)(k · k′)

+
1
4
t
(4)
1 (1 + x

(4)
1 Pσ)

[
(k2 + k′2)2 + 4(k′ · k)2

]

+t
(4)
2 (1 + x

(4)
2 Pσ)(k′ · k)(k2 + k′2).(2)

In the above expression, a Dirac function δ(r1 − r2) is to be understood [2]. For the
spin-orbit term V LS

N1LO, we have used

V LS
N1LO = iW0(σ̂1 + σ̂2) [k′ × k] ,(3)

as in the standard Skyrme interaction [18]. In Ref. [14], we have shown that a finite-
range spin-orbit term can be also expanded in terms of relative momenta, but only
this one is actually gauge invariant and thus fulfils a continuity equation [11]. For the
density dependent term we have adopted the standard term as used in Ref. [18]. A
possible alternative would be the inclusion of an explicit three-body term. This possibility
has been discussed in details in Ref. [20]. Let us finally mention that from the above
expressions, it is possible to derive the Skyrme N2LO functional by averaging on Hartree-
Fock states (HF). We refer to Ref. [16] for more details.
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3. – Fitting protocol

The 14 parameters p = {t0, t1, t1, . . . } of the N2LO pseudo-potential are deter-
mined by minimising a penalty function containing both properties of the infinite nuclear
medium and finite nuclei. The penalty function χ2 is defined as [19]

χ2(p) =
M∑
i=1

(
Oi − fi(p)

ΔOi

)2

(4)

where the sum runs over all the M (pseudo)-observables Oi we include in the fit. fi is
the value obtained with our model for a given array of parameters p of size n. Finally
ΔOi is the weight we give to each point in the fit. For more details see Ref. [16]. The
fitting protocol is quite similar to the usual Saclay-Lyon one [18] combined with the
nuclear response functions in infinite nuclear matter [21] to avoid all possible finite-size
instabilities [22]. To this purpose we had to add on top of Eq. (4) an additional asym-
metric constraint [16]. The resulting parametrisation, named SN2LO1, fairly reproduces
binding energies, radii [16] and pairing gaps [23] with the same level of accuracy of the
SLy5* functional [17], fitted with the same protocol. However, even if it is the first
time a stable parametrisation incorporating higher order gradients have been obtained,
the higher order interaction parameters are actually not well constrained and a major
challenge is to find the right observables to constraint them.

4. – Covariance analysis

The minimisation of Eq.4 leads to the optimal set of parameters. Let us call it p0.
Following Ref. [24], we can thus make a Taylor expansion of χ2 around p0 as

χ2(p) = χ2(p0) +
1
2

n∑
ij

(pi − p0i)
∂2χ2(p)
∂pi∂pj

∣∣∣∣
p=p0

(pj − p0j) + . . .(5)

The covariance matrix E is defined as the inverse of the Hessian matrix M

Mij =
∂2χ2(p)
∂pi∂pj

∣∣∣∣
p=p0

.(6)

We immediately see from this equation that the derivatives with respect to the parameters
need to be computed numerically thus requiring an optimal choice for the variation step
of the parameters. In the present work, we have adopted the criterion given in Ref. [24].
From E , we then extracted the error bar on the fitted parameter pi as e(pi) =

√
Eii

together with some possible correlations between parameters

Cij =
Eij√
EiiEjj

,(7)

C being the correlation matrix. More precisely, when Cij = ±1 then the two parameters
pi, pj are correlated (+1) or anti-correlated (-1). When Cij ≈ 0 the two parameters are
independent. See Ref. [19] for a more detailed discussion.
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Table I: Parameters of the SN2LO1cov pseudo-potential and their associated error bar.
We keep the exponent α = 1/6 fixed during the fit.

n i t
(n)
i [MeVfm3+n] x

(n)
i

0 0 -2477.48 ± 5.87 0.766 ±0.014
2 1 507.80 ± 6.64 0.001±0.003
2 2 -421.48 ± 23.07 -0.918 ± 0.012
4 1 -29.68 ±4.67 0.352 ±0.006
4 2 4.69± 0.63 2.14 ±0.06

t3[MeV fm3(1+α)] =13660.67 ±54.94 x3 = 1.173 ± 0.018

W0 = 122.3 ± 6.7 [MeV fm5]

In performing our analysis, we have observed that some of the parameters of our
SN2LO1 functional were poorly constrained showing a very flat χ2 in some directions
in parameter space. The resulting functional is sloppy [26]. As a consequence a full
covariance analysis would be meaningless, the optimal solution being to find observable(s)
for which the new terms t

(4)
1 , t

(4)
2 are most sensitive. Current sensitivity studies are

ongoing, but at present we have not been able to find adequate observable(s). As a
consequence and an alternative, we have decided to keep the same fitting protocol of
Ref. [16], but now modifying slightly the weights of the different components of the
penalty function χ2 as done in Ref. [27]. Changing the weights ΔO effectively modifies
the hyper-surface of the penalty function and gives us the possibility of exploring other
local minima. We have thus been able to find a physically acceptable local minimum
where the parameters of the Skyrme functional are all well-constrained [19]. In Tab. I,
we report the parameters with their corresponding error bar of the new pseudo-potential
named SN2LO1cov.

By inspecting the above table, we observe that all parameters are tightly constrained
and that the new higher order terms, although very small, are not compatible with
zero. This means that these parameters are not redundant and they may be used to
improve the fit. We may however notice that the x

(2)
1 parameter is compatible with 0,

illustrating that the higher order parameters lead to a non-perturbative reorganisation
of some of the previous Skyrme NLO parameters. In Fig. 1, we study the propagation
of a 1% variation on the t

(n)
i parameters on some selected properties of nuclear matter

at saturation density ρsat : symmetry energy J0 and its slope L0, effective mass m∗/m,
binding energy per particle E/A and nuclear incompressibility K∞. As expected, the
major contributions come from the t0, t3 terms, which are very tightly constrained in our
fit, the terms t

(4)
1 , t

(4)
2 having a non negligible impact only on the slope of the symmetry

energy.
In Fig. 2, we also show the correlation matrix C for the SN2LO1cov parametrisation.

We observe how the ti parameters are on average strongly correlated among each other.
For example we see that the t0, t3 parameters are strongly correlated with the t

(2)
1 ; while

the fourth order terms are correlated to their corresponding second order one in pairs:
t
(4)
1 /t

(2)
1 and t

(4)
2 /t

(2)
2 . In Ref. [28], we have shown the strong correlation between the

effective mass and other saturation properties of the nuclear medium and thus effectively
a strong correlation between the ti parameters. An interesting feature of Fig. 2 is that
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Fig. 1: Propagation of a 1% variation of a few selected parameters of SN2LO1cov on
some properties of nuclear matter at saturation density ρsat. See text for details.
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Fig. 2: (Colors online) Correlation matrix for SN2LO1cov parameters. See text for details.

the xi parameters are quite independent from each other, apart for x0 and x3. This
means we may have some extra freedom in adjusting them in a future fit.

5. – Conclusions

We have performed a full covariance analysis on the recently fitted Skyrme N2LO
pseudo-potential [16]. By introducing some modifications to the weights of the penalty
function, we have been able to find a well defined local minimum to perform a full covari-
ance analysis. We have derived error bars for the parameters of the pseudo-potential and
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we have noticed that the new parameters are non-compatible with zero, thus showing
that these new terms do actively contribute to the fit.

At present, it is still not possible to judge if these new parameters will lead to a real
improvement in describing nuclear observables, but research in this direction is ongoing.
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