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Summary. — The Random-Phase-Approximation (RPA) amended Nilsson-
Strutinskij theory, which successfully describes the pattern of binding energies of
the nuclei with N ≈ Z and even A = N + Z, where N and Z are the numbers of
neutrons and protons, is applied to nuclei with odd A in both the N ≈ Z region
and the chain of Sn isotopes. The RPA correction contributes significantly to the
calculated odd-even mass differences, most significantly in light nuclei.

In the Strutinskij theory [1], the nuclear binding energy B is given by

(1) −B = ELD + δEi.n. + δEBCS.

Here, ELD is the energy of a deformed liquid drop. In the subsequent terms, δEi.n. =
Ei.n.−Ẽi.n., and similarly for δEBCS. The energy Ei.n. of independent nucleons is the sum
of occupied single-nucleon levels in a, generally deformed, potential well and Ei.n. +EBCS

is the total energy in the Bardeen-Cooper-Schrieffer (BCS) approximation [2] of these
nucleons interacting by a pairing interaction. The “smooth” counter terms Ẽi.n. and
ẼBCS represent an average dependence of Ei.n. and EBCS on the numbers of neutrons
and protons and the deformation. Like Ei.n. and EBCS, each of them is the sum of
contributions from the neutron and the proton systems. In the smooth terms, each of
these contributions is given by a closed expressions in terms of a smooth single-nucleon
level density g̃(ε), a pair coupling constant G and the dimension of the valence space for
the pairing interaction. (Conventionally, G is expressed in terms of a suitably defined
smooth gap parameter Δ̃.)

With Frauendorf, we extended this scheme, adding a term δERPA =
ERPA − ẼRPA such that Ei.n. + EBCS + ERPA is the ground state energy in the Ran-
dom Phase Approximation (RPA) [3] of the above system with an additional pairing
interaction of neutrons and protons [4]. The liquid drop energy was written in the five-
parameter form of Duflo and Zuker [5] with an additional dependence on deformation.
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For the single-nucleon potential we chose a Nilsson potential with the parameters of
ref. [6]. The deformations were taken from a previous Nilsson-Strutinskij calculation
without the RPA correction [7], and a single, common pair coupling constant G was
adopted for the interactions of two-neutron, two-proton and neutron-proton pairs. Be-
cause the RPA is the theory of small oscillations about a mean-field equilibrium, in this
case the BCS ground state, the inclusion of the RPA correction accounts for the binding
energy contribution of pair-vibrational correlations. This extended theory was found to
reproduce reasonably well the pattern of binding energies of nuclei with nearly equal
neutron number N and proton number Z and even A = N + Z, including the Wigner
cusps [8], the symmetry energy coefficients, the doubly odd-doubly even mass differences
for isospin T = 0 and the relative energies of the lowest levels with T = 0 and 1 in the
nuclei with odd N = Z. One of us improved the expression for ẼRPA [9] and applied
this improved expression in revised calculations, relaxing also somewhat the strict re-
quirement of isobaric invariance imposed on the microscopic model in ref. [4] so as to
approach the conventional Nilsson-Strutinskij scheme [10]. These modifications did not
alter the main conclusion of ref. [4].

In the present note we test this model for nuclei with odd A = N+Z. We study in par-
ticular the RPA contribution to the calculated odd-even mass differences Δoe,n or p(N,Z),
which we define as the mass of the nucleus (N,Z) minus the average mass of the neigh-
bouring doubly even nuclei. The label n or p refers to the cases of odd N and odd Z,
respectively. Two regions on the chart of nuclides are considered: (i) The N ≈ Z region,
where the nuclei with even A were studied already in great detail in the work cited above.
We focus here on the odd-A nuclei just “below” the N = Z line, having Z = N − 1. The
pair coupling constant G is parametrised in the form G = G1A

e and the parameters G1

and e fitted, as in ref. [10], to the T = 0 doubly odd-doubly even mass differences and the
relative energies of the lowest states with T = 0 and 1 for odd N = Z. For the even-A
nuclei in this region, the present calculations differ from those of ref. [10] in two respects,
namely by the choice of a considerably smaller interval of interpolation of ERPA across
the critical G, cf. ref. [4], and by the use of N , Z and A/2 single-nucleon levels in the
neutron, proton and neutron-proton pairing calculations. For odd A we use (A + 1)/2
levels in the neutron-proton calculation. (ii) The chain of Sn isotopes, where the small
interpolation interval was found imperative for the reproduction of the pattern of the
doubly even binding energies near N = 50. We also found that in order to reproduce the
pattern of the doubly even binding energies near N = 82 as well as the neutron odd-even
mass differences, the expression for G applied in the N ≈ Z region must be reduced by
both a T -dependent factor 1 − 0.015T and a constant factor 0.78. We thus have two
determinations of G(100Sn) differing by 22%. Being based on the most certain empirical
data, the value resulting from the analysis of the chain of Sn isotopes is presumably the
one that is most reliable. For a given expression for G, the liquid drop parameters are
fitted to the doubly even masses of the region.

Our results are summarised in the upper left, upper right and lower left panels of
fig. 1. Largely, the calculations (dark blue curves) reproduce the measured odd-even
mass differences (black, dashed curves). Conspicuous deviations, where the calculated
value drops to about zero, occur in the N ≈ Z region for N and Z = 25. Neither is
a similar value for N = 49 likely to represent the reality. These rare instances of a
predicted vanishing of the odd-even mass difference seem to suggest an instability of the
formalism under certain circumstances, but we did not succeed in pinpointing the exact
circumstances which trigger this anomaly.

The three panels display the individual contributions to the calculated odd-even mass
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Fig. 1. – Compositions of calculated odd-even mass differences. Upper left: Odd N = Z + 1.
Upper right: Odd Z = N −1. Lower left: Odd N for Z = 50. Also shown are the corresponding
calculated BCS gap parameters Δn or p for both the odd-A nucleus and its doubly even neigh-
bours and the measured odd-even mass differences. Lower right: Measured (dark blue) and
calculated (red) total shell correction in a sequence of doubly even Sn isotopes.

differences. The liquid drop value is shown in cyan. Adding δEi.n. to the liquid drop
energies gives the brown curves. Adding further δEBCS gives the red curves and adding
finally δERPA gives the dark blue curves. Also shown in green are the corresponding
calculated BCS gap parameters Δn or p for both the odd-A nucleus and its doubly even
neighbours. The gap is generally lower in the odd-A nucleus than in the neighbours be-
cause in the former, the Fermi level is blocked from participation in the pair correlations.
In the absence of the RPA correction, the odd-even mass differences are seen to follow
quite closely the average trends of the fluctuating gaps.

In the upper sd shell, the RPA contribution is positive, and it makes up about half
of the neutron odd-even mass difference and almost the total proton one. In fact the
odd-even mass differences are small in this region in the absence of the RPA correction.
For Z = 13 and 15 the proton odd-even mass difference is even negative. These small
values are related to the fact that the pair gaps tend to vanish in these light nuclei. They
render the RPA contribution very essential for the formation of the total odd-even mass
differences. In the N ≈ Z region above 40Ca, the RPA contribution is mostly small, and
it can have either sign. In the Sn isotopes, it is mostly positive, and it makes up, on
average, 8% of the total. It is largest near the shell closures at N = 50 and 82, where
Δn vanishes.

These signs of the RPA contribution to the odd-even mass difference can be qual-
itatively understood from the expression for ẼRPA [9]. In fact, like ERPA, its counter
term ẼRPA is composed of a neutron, a proton and a neutron-proton part. Apart from
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a T -dependent term in the neutron-proton part, which largely matches a similar term in
ERPA, each part can be written ΩGf(a), where 4Ω is the valence space dimension and
a = 1/(g̃(λ̃)G). Here, λ̃ is a smooth chemical potential. The function f(a) is negative
and has a minimum at a ≈ 2.8. In the upper sd shell and in the Sn isotopes, a is larger
than 3, so f(a) has an upwards slope. The blocking of, say, the neutron Fermi level
effectively dilutes the single-nucleon spectra which enter the neutron and neutron-proton
parts of ERPA. The resulting smaller effective level densities correspond to larger values
of a and, therefore, larger values of f(a). Accordingly, ERPA tends to be less negative in
the odd-A nucleus than in the doubly even neighbours while ẼRPA does not exhibit this
staggering. Above 40Ca in the N ≈ Z region, a descends to values about the minimum
of f(a) with the result that blocking a Fermi level has little effect.

We conclude that in the model we have been studying, pair vibrational correlations
play an important role in forming the odd-even mass difference, most important in light
nuclei.

Finally, we convey a couple of observations unrelated to odd-even mass differences.
First, as already mentioned, the RPA energy ERPA is composed of contributions from
each of the three parts of the pairing interaction, the two-neutron, the two-proton and
the neutron-proton parts [11]. While the two first of these contributions are essentially
unaffected by a neutron excess, the third one decreases numerically with an increasing
surplus of neutrons because the orbits of the excess neutrons are blocked to the interaction
of neutron-proton pairs. We find, however, in our calculations that even in 140Sn with
T = 20, the RPA energy is reduced to only half its value in 100Sn with T = 0.

Second, Togashi et al. recently pointed out a sudden drop of the doubly even two-
neutron separation energy in the Sn isotopes as a function of N at N = 66. They
interpreted it as a second order phase transition [12]. As seen in the lower right panel of
fig. 1, our model reproduces this behaviour of the two-neutron separation energy. The
measured total shell correction δE shown in the figure is defined as −B − ELD, where
B is the measured binding energy and ELD the calculated liquid drop energy, and the
calculated one as δEi.n. + δEBCS + δERPA. In our calculations, the drop is related to an
onset of oblate deformations with the entrance into the highly degenerate 1h11/2 shell.
That oblate deformations occur in this part of the Sn isotopic chain concurs with what
Togashi et al. find in their large scale Monte Carlo Shell Model calculations.
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