Colloquia: EuNPC 2018

Recent results on charmed meson decays at BESIII

X. Y. Shan(*) on behalf of the BESIII Collaboration

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China - Hefei, China
received 5 February 2019

Summary. - The BESIII Experiment at the Beijing Electron Positron Collider (BEPCII) has accumulated the world largest $e^{+} e^{-}$annihilation samples at 3.773 GeV with $2.93 \mathrm{fb}^{-1}$ for $D^{0(\pm)}$ and 4.178 GeV with $3.19 \mathrm{fb}^{-1}$ for $D_{s}^{ \pm}$, which provide a clean background to study charmed meson decays. In this proceeding, we present the recent results of the study of D meson decays at BESIII.

1. - Introduction

The BESIII [1] is a magnetic spectrometer working at a double-ring $e^{+} e^{-}$collider BEPCII operating at center-of-mass energy between 2.0 GeV and 4.6 GeV , located at the Institute of High Energy Physics (IHEP) in Beijing, China. The analysis presented in this report are based on two data samples. One is the $e^{+} e^{-}$annihilation sample taken at 3.773 GeV with $2.93 \mathrm{fb}^{-1}$, where the main production is $e^{+} e^{-} \rightarrow \Psi(3770) \rightarrow D \bar{D}$. Another one is the $e^{+} e^{-}$annihilation sample taken at 4.178 GeV with $3.19 \mathrm{fb}^{-1}$, where the main production is $e^{+} e^{-} \rightarrow D_{s}^{* \pm} D_{s}^{\mp}$. In these analyses, double tag method are used. We reconstruct only one of $D \bar{D}$ pair which is called single tag (ST), and reconstruct both of $D \bar{D}$ pair which is called double tag (DT). The absolute branching fraction can be calculated according to the yields and efficiencies of ST and DT by $\mathcal{B}=\frac{N_{D T}}{N_{S T} \cdot \epsilon_{D T} / \epsilon_{S T}}$. Throughout the proceeding, charge conjugate decays are implied unless otherwise noted.

2. - (Semi-)leptonic decays

In SM, the decay rate of $D_{(s)}^{+} \rightarrow \ell^{+} \nu_{\ell}$ and $D \rightarrow P \ell^{+} \nu_{\ell}$ can be parameterized as:

$$
\begin{align*}
\Gamma_{D_{(s)}^{+} \rightarrow \ell^{+} \nu_{\ell}} & =\frac{G_{F}^{2}}{8 \pi} f_{D_{(s)}^{+}}^{2} m_{\ell}^{2} m_{D}\left(1-\frac{m_{\ell}^{2}}{m_{D}}\right)\left|V_{c d(s)}\right|^{2} \tag{1a}\\
\frac{\mathrm{~d} \Gamma_{\mathrm{D}_{(s)} \rightarrow \mathrm{P} \ell^{+} \nu_{\ell}}}{\mathrm{dq}^{2}} & =\frac{G_{F}^{2}\left|V_{c d(s)}\right|^{2}}{8 \pi^{3} m_{D}}\left|\vec{p}_{P}\right|\left|f_{+}^{P}\left(q^{2}\right)\right|^{2}\left(\frac{W_{0}-E_{P}}{F_{0}}\right)^{2}\left[\frac{1}{3} m_{D}\left|\vec{p}_{P}\right|^{2}+\mathcal{O}\left(m_{\ell}^{2}\right)\right]
\end{align*}
$$

[^0]where G_{F} is Fermi coupling constant, m_{ℓ} and m_{D} are the masses of the lepton and the $D_{(s)}$ meson, $f_{D_{(s)}^{+}}$is the $D_{(s)}^{+}$decay constant, $f_{+}^{P}\left(q^{2}\right)$ is the form factor, $V_{c d(s)}$ is the CKM matrix element, $W_{0}=\frac{m_{D}^{2}+m_{P}^{2}-m_{\ell}^{2}}{2 m_{D}}$ and $F_{0}=W_{0}-E_{p}+\frac{m_{\ell}^{2}}{2 m_{D}}$. (Semi-)leptonic decays provide a excellent chance to measure the $V_{c d(s)}$ with input $f_{D_{(s)}}$ or $f_{+}^{P}\left(q^{2}\right)$ from lattice QCD , and validate lattice QCD (LQCD) by measuring $f_{D_{(s)}^{+}}$or $f_{+}^{P}\left(q^{2}\right)$ with input $V_{c d(s)}$.
21. $D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}$ (preliminary). - Based on $3.19 \mathrm{fb}^{-1}$ data taken at 4.178 GeV , the branching fraction of $D^{+} \rightarrow \tau^{+} \nu_{\tau}$ is measured to be ($\left.5.28 \pm 0.15_{\text {stat. }} \pm 0.14_{\text {syst. }}\right) \times 10^{-3}$ by fitting missing mass square of $\nu_{\mu} .\left|V_{c s}\right|$ is measured to be $0.974 \pm 0.014_{\text {stat }} \pm 0.016_{\text {syst }}$. by input $f_{D_{s}^{+}}^{L Q C D}[2] . f_{D_{s}^{+}}$is measured to be $\left(249.1 \pm 3.6_{\text {stat. }} \pm 3.8_{\text {syst. }}\right) \mathrm{MeV}$ by input $\left|V_{c s}\right|^{\text {CKMfitter }}$ [3]. The lepton flavor universality is tested by measuring the ratio $R_{\tau / \mu}=$ $\frac{\mathcal{B}_{D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau}}}{\mathcal{B}_{D_{s}^{+} \rightarrow \mu^{+} \nu_{\mu}}}[$ this work $] \quad=10.2 \pm 0.5$, which is consistent with SM prediction 9.74 ± 0.01 within 1σ.
2.2. $D^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$. - Based on $2.93 \mathrm{fb}^{-1}$ data taken at 3.773 GeV , the branching fraction of $D^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}$ is measured to be $\left(3.413 \pm 0.019_{\text {stat. }} \pm 0.035_{\text {syst. }}\right) \%$ by fitting $\mathrm{U}_{\text {miss }}=\mathrm{E}_{\text {miss }}-\left|\overrightarrow{\mathrm{p}}_{\text {miss }}\right| c$ of ν_{μ}. Series expansion parameterization [4] to 2nd order of form factor is used in the fit of partial decay rates shown in Fig. 1 (a), and $\left|V_{c s}\right|$ is measured to be $0.955 \pm 0.006_{\text {exp. }} \pm 0.024_{L Q C D}$ by input $f_{+}^{K, L Q C D}[7], f_{+}^{K}(0)$ is measured to be $0.7327 \pm 0.0039_{\text {stat }} \pm 0.0030_{\text {syst. }}$ by input $\left|V_{c s}\right|^{\mid \text {CKMfitter }}$ [3]. The lepton flavor universality is tested by measuring the ratio $R_{\mu / e}^{K}\left(q^{2}\right)=\frac{\mathcal{B}_{D^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}}[\text { this work }]}{\mathcal{B}_{D^{0} \rightarrow K^{-}}{ }^{+} \nu_{e}}$ [5] which is showed in Fig. 1 (c) by red dots, and the value is consistent with SM prediction showed by solid line in Fig. 1 (c). The details can be found in Ref.[6].
2.3. $D_{s}^{+} \rightarrow \eta^{\left({ }^{\prime}\right)} e^{+} \nu_{e}$ (preliminary) . - Based on $3.19 \mathrm{fb}^{-1}$ data taken at 4.178 GeV , the branching fraction of $D_{s}^{+} \rightarrow \eta^{\left({ }^{\prime}\right)} e^{+} \nu_{e}$ are measured to be $\left(2.32 \pm 0.06_{\text {stat. }} \pm 0.06_{\text {syst. }}\right) \%$ and $\left(0.82 \pm 0.07_{\text {stat. }} \pm 0.03_{\text {syst. }}\right) \%$ by fitting the missing mass square distribution of ν_{μ}. Series expansion parameterization [4] to 2nd order for form factor is used in the fit of partial decay rates, and $\left|V_{c s}\right|$ is measured to be $0.917 \pm 0.094_{\text {stat. }} \pm 0.156_{\text {syst. }}$ for $D_{s}^{+} \rightarrow \eta^{\prime} e^{+} \nu_{e}$ and $1.032 \pm 0.012_{\text {stat. }} \pm 0.080_{\text {syst }}$. for $D_{s}^{+} \rightarrow \eta e^{+} \nu_{e}$ by input $f_{+}^{\eta^{\left({ }^{\prime}\right)}}, L Q C D[8] . f_{+}^{\eta^{\left({ }^{(}\right)}}$are measured to be $0.458 \pm 0.005_{\text {stat. }} \pm 0.004_{\text {syst. }}$ and $0.490 \pm 0.050_{\text {stat. }} \pm 0.011_{\text {syst. }}$. The

Fig. 1. - (a) Fit to partial decay rates, the red dots are data and solid curve is fit fuction. (b) Projection on form factor of figure (a). (c) The value of measured $R_{\mu / e}^{K}\left(q^{2}\right)$ (red dots) and SM prediction (solid curve).

Table I. - Fit results of $f_{+}(0)\left|V_{c d}\right|$ with corresponding models. The last value of $f_{+}(0)$ is extracted by input $\left|V_{c s}\right|^{\text {CKMfitter }}$ [3].

Model	Parameter	Value (preliminary)	$f_{+}(0)$ (preliminary)
simple pole	$f_{+}(0)\left\|V_{c d}\right\|$	$0.175 \pm 0.010 \pm 0.001$	$0.778 \pm 0.044 \pm 0.004$
Modified pole model	$f_{+}(0)\left\|V_{c d}\right\|$	$0.163 \pm 0.017 \pm 0.003$	$0.725 \pm 0.076 \pm 0.013$
Series two parameters	$f_{+}(0)\left\|V_{c d}\right\|$	$0.45 \pm 0.44 \pm 0.02$	
	r_{1}	$-2.94 \pm 2.32 \pm 0.014$	$0.720 \pm 0.084 \pm 0.013$

$\eta-\eta^{\prime}$ mixing angle is calculated to be $\phi_{P}=\left(40.2 \pm 1.4_{\text {stat. }} \pm 0.5_{\text {syst. }}\right)^{\circ}$ according to the equation $\cot ^{4} \phi_{\mathrm{P}} \simeq \frac{\Gamma_{\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \eta^{\prime} \mathrm{e}^{+} \nu_{\mathrm{e}}} / \Gamma_{\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \eta \mathrm{e}^{+} \nu_{\mathrm{e}}} \text { [this work] }}{\Gamma_{\mathrm{D}+} \rightarrow \eta^{\prime} \mathrm{e}^{+} \nu_{\mathrm{e}} / \Gamma_{\mathrm{D}}+\rightarrow \mathrm{e}^{+} \nu_{\mathrm{e}}}[9]$.
2.4. $D_{s}^{+} \rightarrow K^{(*) 0} e^{+} \nu_{e}$ (preliminary) . - Based on $3.19 \mathrm{fb}^{-1}$ data taken at 4.178 GeV , the branching fraction of $D_{s}^{+} \rightarrow K^{(*) 0} e^{+} \nu_{e}$ are measured to be $\left(3.25 \pm 0.38_{\text {stat. }} \pm\right.$ $\left.0.14_{\text {syst. }}\right) \times 10^{-3}$ and $\left(2.38 \pm 0.26_{\text {stat. }} \pm 0.12_{\text {syst. }}\right) \times 10^{-3}$ by fitting missing mass square distribution of ν_{e}. For $D_{s}^{+} \rightarrow K^{0} e^{+} \nu_{e}$, three models for form factor are used to extract $f_{+}(0)\left|V_{c d}\right|$, and the fit results with corresponding models are listed in Table.I. For $D_{s}^{+} \rightarrow$ $K^{* 0} e^{+} \nu_{e}$, the formula of differential decay rates given by [10] is used to perform a four dimensional fit, and the form factor is measured to be $r_{V}=1.67 \pm 0.34 \pm 0.16$ and $r_{2}=0.77 \pm 0.28 \pm 0.07$.
2.5. $D \rightarrow a_{0}(980) e^{+} \nu_{e}$. - Based on $2.93 \mathrm{fb}^{-1}$ data taken at 3.773 GeV , the branching fraction $\mathcal{B}_{D^{0} \rightarrow a_{0}(980)^{-} e^{+} \nu_{e}} \times \mathcal{B}_{a_{0}(980)^{-} \rightarrow \eta \pi^{-}}$and $\mathcal{B}_{D^{+} \rightarrow a_{0}(980)^{0} e^{+} \nu_{e}} \times \mathcal{B}_{a_{0}(980)^{0} \rightarrow \eta \pi^{0}}$ are measured to be $\left(1.33_{-0.29}^{+0.33} \pm 0.09\right) \times 10^{-4}$ and $\left(1.66_{-0.66}^{+0.81} \pm 0.11\right) \times 10^{-4}$ by performing a two dimensional fit of $\mathrm{M}_{\eta \pi}$ versus $\mathrm{U}_{\text {miss }}=\mathrm{E}_{\text {miss }}-\left|\overrightarrow{\mathrm{p}}_{\text {miss }}\right| c$. The significance of first one is 6.4σ, and the second one is 2.9σ. The upper limit for the second one is determined as $<3.0 \times 10^{-4}$ at the 90% C.L. The decay rates ratio $\frac{\Gamma_{D^{0} \rightarrow a_{0}(980)-e+\nu_{e}}}{\Gamma_{D+\rightarrow a_{0}(980)^{0} e^{+}+\nu_{e}}}$ is calculated to be $2.03 \pm 0.95 \pm 0.06$, which is consistent with the prediction of isospin symmetry. The details can be found in Ref.[11].

3. - Hadronic decays

For D meson hadronic decays, we focus on the decays via W -annihilation process.
3.1. $D_{s}^{+} \rightarrow p \bar{n}$ (preliminary). $-D_{s}^{+} \rightarrow p \bar{n}$ can proceed only via W-annihilation process. The branching fraction is expected to be $\sim 10^{-6}$ though short-distance process. The long-distance process can enhance the branching fraction to $\sim 10^{-3}$. Based on 3.19 $f b^{-1}$ data taken at 4.178 GeV , the branching fraction of $D_{s}^{+} \rightarrow p \bar{n}$ is measured to be $(1.22 \pm 0.10) \times 10^{-3}$ by fitting the missing mass of \bar{n}, which is consistent with CLEO's measurement [12] with improved precision and long distance expectation.
3.2. $D_{s}^{+} \rightarrow \omega \pi^{+}$and ωK^{+}(preliminary). $-D_{s}^{+} \rightarrow \omega \pi^{+}$can proceed only via Wannihilation process and $D_{s}^{+} \rightarrow \omega K^{+}$contains W -annihilation process distribution. Based on $3.19 \mathrm{fb}^{-1}$ data taken at 4.178 GeV , the branching fraction of $D_{s}^{+} \rightarrow \omega \pi^{+}$ and $D_{s}^{+} \rightarrow \omega K^{+}$are measured to be $\left(1.85 \pm 0.30_{\text {stat. }} \pm 0.19_{\text {syst. }}\right) \times 10^{-3}$ and $(1.13 \pm$
$\left.0.24_{\text {stat. }} \pm 0.14_{\text {syst. }}\right) \times 10^{-3}$. The first one is consistent with CLEO's measurement [13], and the second one is the first observation.
3.3. $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \eta$ (preliminary). - Based on $3.19 \mathrm{fb}^{-1}$ data taken at 4.178 GeV , the total branching fraction of $D_{s}^{+} \rightarrow \pi^{+} \pi^{-} \eta$ is measured to be $\left(9.50 \pm 0.28_{\text {stat. }} \pm 0.41_{\text {syst. }}\right) \%$ by double tag method with 7 dominated tag modes. Amplitude analysis is performed for this channel, and the branching fraction of W -annihilation process $D_{s}^{+} \rightarrow a_{0}(980)^{+} \pi^{0}$ and $D_{s}^{+} \rightarrow a_{0}(980)^{0} \pi^{+}$are measured to be $\left(1.46 \pm 0.15_{\text {stat. }} \pm 0.22_{\text {syst. }}\right) \%$ under isospin symmetry.

4. - Rare decays

4.1. $D \rightarrow h\left(h^{(\prime)}\right) e^{+} e^{-} .-D \rightarrow X_{u} \ell^{+} \ell^{-}$are good channels to study FCNC transitions and the branching fraction in SM is less than 10^{-9}. A long-distance effect can enhance this branching fraction to 10^{-6}. The previous upper limit for four body D^{0} decays with $e^{+} e^{-}$are $\sim 10^{-4}-10^{-5}$, and four body D^{+}decays with $e^{+} e^{-}$have not been studied before. Based on $2.93 \mathrm{fb}^{-1}$ data taken at 3.773 GeV , the branching fraction of four body D^{0} decays with $e^{+} e^{-}$are measured with an improved precision to $\sim 10^{-5}-10^{-6}$, and the branching fraction of four body D^{+}decays with $e^{+} e^{-}$are measured to be $\sim 10^{-5}$. The details can be found in Ref.[14].

5. - Summary

Based on $2.93 \mathrm{fb}^{-1}$ and $3.19 \mathrm{fb}^{-1} e^{+} e^{-}$annihilation data taken at 3.773 GeV and 4.178 GeV by BESIII, recent analyses of D meson decays performed by BESIII collaboration are presented in this proceeding. In these analyses, $D^{0} \rightarrow a_{0}(980)^{-} e^{+} \nu_{e}, D_{s}^{+} \rightarrow p \bar{n}$, $D_{s}^{+} \rightarrow \omega K^{+}$and $D_{s}^{+} \rightarrow a_{0}(980) \pi$ are observed for the first time, and the branching fraction or upper limit of other channels are measured with an improved precision. The $\left|V_{c d(s)}\right|, f_{D_{s}^{+}}$and f_{+}are measured in (semi-)leptonic decays which provide important test to LQCD calculation and CKM matrix unitary. More results will be coming in the near future.

REFERENCES

[1] M. Ablikim et al. (BESIII Collaborations), Nucl. Instrum. Meth. A, 614 (2010) 345.
[2] A. Bazavov et al. (Fermilab Lattice and MILC Collaborations), Phys. Rev. D, 90 (2014) 074509.
[3] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D, 98 (2018) 030001.
[4] T. Becher and R. J. Hill, Phys. Lett. B, 633 (2006) 61.
[5] M. Ablikim et al. (BESIII Collaborations), Phys. Rev. D, 92 (2015) 072012.
[6] M. Ablikim et al. (BESIII Collaborations), arXiv: 1810.03127
[7] H. NA et al. (HPQCD Collaboration), Phys. Rev. D, 82 (2010) 114506.
[8] N. Offen, F. A. Porkert and A. SchÄfer, Phys. Rev. D, 88 (2013) 034023.
[9] M. Ablikim et al. (BESIII Collaborations), Phys. Rev. D, 97 (2018) 092009.
[10] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. Lett., 110 (2013) 131802.
[11] M. Ablikim et al. (BESIII Collaborations), Phys. Rev. Lett., 121 (2018) 081802.
[12] S. B. Athar et al. (CLEO Collaboration), Phys. Rev. Lett., 100 (2008) 181802.
[13] J. Y. Ge et al. (CLEO Collaboration), Phys. Rev. D, 80 (2009) 051102(R).
[14] M. Ablikim et al. (BESIII Collaborations), Phys. Rev. D, 97 (2018) 072015.

[^0]: (*) E-mail: shanxy@mail.ustc.edu.cn

