
DOI 10.1393/ncc/i2019-19196-4

Colloquia: IFAE 2018

IL NUOVO CIMENTO 42 C (2019) 196

Convolutional neural network for track seed filtering
at the CMS HLT

A. Di Florio(1)(2)

(1) Dipartimento Interateneo di Fisica di Bari, Università di Bari - Bari, Italy
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Summary. — Starting with Run III, future development projects for the Large
Hadron Collider will constantly bring nominal luminosity increase, with the ulti-
mate goal of reaching a peak luminosity of 5 · 1034 cm−2 s−1 for ATLAS and CMS
experiments. This rise in luminosity will result in an increased number of simul-
taneous proton collisions (pileup), up to 200, that will pose new challenges for the
CMS detector and, specifically, for track reconstruction in the Silicon Pixel Tracker.
One of the first steps of the track finding workflow is the creation of track seeds, i.e.,
compatible pairs of hits, that are subsequently fed to higher-level pattern recognition
steps. However, the set of compatible hit pairs is highly affected by combinatorial
background. A possible way of reducing this effect is taking into account the shape
of the hit pixel cluster to check the compatibility between two hits. To each doublet
is attached a collection of two images built with the ADC levels of the pixels forming
the hit cluster. Thus, the task of fake rejection can be seen as an image classification
problem for which Convolutional Neural Networks (CNNs) have been widely proven
to provide reliable results. In this work we present our studies on CNNs applications
to the filtering of track pixel seeds.

1. – Track reconstruction at the CMS HLT

The Compact Muon Solenoid (CMS) [1] is a general-purpose detector designed for
the precision measurement of leptons, photons, and jets, among other physics objects, in
proton-proton as well as heavy-ion collisions at the CERN LHC [2]. The LHC is designed
to collide protons at a center-of-mass energy of 14 TeV and a luminosity of 1034 cm−2 s−1.
At design luminosity, the pp interaction rate is about 1 GHz but only a small fraction
of these collisions contains events that can be interesting for CMS physics analyses and
can be stored to be accessible offline. The trigger system is devoted to the selection of
these events from the totality of the inelastic collision events. In order to accomplish this
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task, the CMS trigger system utilizes two levels [3]. The first one (L1) is implemented
in custom hardware and restricts the output rate to 100 kHz. Events are then passed to
the High-Level Trigger (HLT) that further refines the purity of the physics objects, and
selects an average rate of 400 Hz for final offline storage.

The HLT hardware consists of a processor farm and gathers information from all
the CMS detectors. One of the first steps for the event selection at HLT is the track
reconstruction that has to fulfill stringent CPU timing constraints: the event selection
has to be fulfilled with an average latency smaller than 260 ms. With the instantaneous
luminosity increasing up to the ultimate goal of 5·1034 cm−2 s−1 for the High Luminosity
LHC (HL-LHC) upgrade, this time constraint is rapidly approaching. Beside this, the
number of simultaneous proton collisions per bunch crossing (“pileup”) will continue to
increase: in 2018 the highest pileup reached averaged over a data run exceeded 50. The
track reconstruction procedure begins with the construction of seeds (seeding), i.e., few
(2–4) pixel hits that act as the building blocks for track candidates and define the initial
estimate for trajectory parameters.

The very first step of seeding consists in collecting and mapping all the valid hits
on the Silicon Pixel Detector layer. The Run 2 updated Silicon Pixel Tracker is ar-
ranged in four barrel layers (BPix) and three forward disks (FPix) in each endcap re-
gion. Then, iterating on all the couples of consecutive seeding layers, the algorithm
selects and collects all the compatible hit pairs (doublets). The compatibility between
two hits is evaluated only on the basis of geometrical considerations, such as cuts in
η, φ and r. The doublet production is thus highly dominated by combinatorial back-
ground and constitutes a bottleneck for the subsequent steps. Therefore, the reduction
of the track reconstruction time hinges on the rejection of seeding combinatorial back-
ground. In the next sections a method for filtering doublet seeds based on CNNs is
proposed.

2. – Convolutional neural networks for doublet seeds filtering

A traditional deep neural network is a machine learning model whose goal is to ap-
proximate a function f̂ by composing a sequence of simpler functions. It consists of an
input layer, one or more hidden layers and an output layer [4]. To a first approximation,
each layer acts on the input as a composition of a matrix multiplication and an activation
function. Convolutional neural networks [5] are a specialized kind of neural network for
processing data that has a grid-like structure, such as 2D images. The building block of a
CNN is a layer that uses discrete convolution in place of general matrix multiplication [4].
A convolutional layer takes in input a n × m × r two-dimensional image, where r is the
number of channels or depth. The output of one or more stacked convolutional layers is
usually passed to pooling layers that perform dimensionality reduction. A p× p′ pooling
layer replaces a p × p′ region of the image with a single value, e.g., the maximum value
in that region for a max pooling layer.

As described above, while building seeds, the compatibility between two hits is eval-
uated only on the basis of geometrical considerations. A possible way of reducing the
doublet fake ratio is taking into account that each hit is actually a cluster of pixels with
its own shape. Each pixel is characterized by its 16-bit A.D.C. level (maxADC = 216 − 1)
and its local position (x, y) on the layer. For each hit a 15 × 15 squared matrix M is
built with the pixel local x on the rows and the local y on the columns. The matrix
center is matched with the hit center of charge and each element mij is set to the A.D.C.
level of the corresponding (xi, yj) pixel. Those pixels that stride over the hit cluster
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Fig. 1. – Example of a BPix1-BPix2 true doublet generated from tt̄ simulated events correspond-
ing to a π+ track.

boundaries are set to zero (zero-padding technique). With this procedure each doublet
can be considered as a collection of two 15 × 15 matrices, see fig. 1. Thus, the rejection
of fake doublets is reduced to an image/pattern recognition task, perfectly suitable for
being dealt with CNNs.

To test the feasibility of this kind of approach, the generation (via PYTHIA 8 [6])
and the reconstruction of tt̄ events at energy of the center of mass of

√
s = 13TeV, with

average pileup 〈PU〉 = 35 and bunch time spacing of 25 ns has been simulated within the
CMS software framework (CMSSW [7]). A doublet is labeled as true only if it is formed
by pixel hits belonging to the same tracking particle. An O(105) doublet is produced per
each event and the ratio between true and fake doublets is an O(102). For each doublet
537 parameters are stored: 225 + 225 pixels for the inner and the outer hit; 63 doublet
features defined for each doublet and that include hit coordinates and further cluster
characteristics; 24 track labels defined only for matched doublets, e.g., the corresponding
particle pT and η.

On the whole, 1000 events are simulated and split into training, test and validation
dataset. The training and the validation set are balanced so that the ratio between

Fig. 2. – Layer map model architecture.
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Fig. 3. – ROC curves for the train, test and validation dataset.

fake and true doublets is one. The whole balanced training dataset is composed of
approximately 2.5 millions doublets.

3. – CNN classifier: The layer map model

The architecture for the doublet filtering classifier (layer map model) is shown in fig. 2
and it concatenates:

1) CNN block : conventional stack of convolutional layers (4) with 5× 5 or 3× 3 filters
and max pooling layers (2) whose output is reduced to a one-dimensional structure
through a flattening layer that returns a 1024-elements vector.

2) Dense block : stack of two fully connected layers that are fed with the one-dimension
reduced images from the previous block and 59 further doublets information (such
as hits’ detectors and coordinates).

The two output neurons, coming from a softmax layer, return the complementary prob-
abilities that a doublet is fake or true (ptrue + pfake = 1.0). The 15 × 15 doublets pads,
before being fed to the first block, are pre-processed as follows. First, each pixel content
is standardized with the mean and the standard deviation pre-computed on the whole
2.5 millions doublet dataset: μ = 13382.00, σ = 10525.13. Then, the input is split into
20 detector channels, 10 for the inner hit and 10 for the outer hit. Every channel cor-
responds to a single layer of the detector (4 barrels and 6 endcaps) and is initialized to
a 15 × 15 zero matrix. Then only the two channels corresponding to the inner and the
outer layer are set, respectively, to the inner hit and the outer hit cluster matrix. This
approach allows us to separate the hit shape clusters based on the specific layer and to
apply a different transformation.

Table I. – Layer map network scores for train, validation and test dataset.

AUC Acc Rej at Eff = 0.99 Eff at Rej = 0.5

Train 0.982 0.938 0.854 0.9997
Test 0.981 0.940 0.853 0.9996
Val 0.980 0.939 0.852 0.9996
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Fig. 4. – Network score for true (blue) and fake (red) doublets for train (filled histogram) and test
dataset (diamond markers). In purple the 0.94 accuracy threshold. In green the 0.99 efficiency
threshold.

The model has been developed and trained with the Keras package [8], a high-level
neural networks API, running on the top of TensorFlow library [9]. The network has been
trained on NVIDIA Tesla K20 nodes at Bari Physics Department Tier 2 (ReCaS) [10]
and on NVIDIA GTX1080 Ti GPUs at CERN.

4. – Model testing and results

Once tested and tuned on a smaller sample, the model has been trained on the whole
dataset (2.5M doublets) with a categorical cross-entropy loss function [4], using Adam [11]
optimizer and accuracy as evaluation metric and with an early stopping callback, to avoid
over-fitting. The training took about 5 days on an NVIDIA Tesla K20 node.

The ROC curves for validation, test and training dataset, shown in fig. 3, completely
overlay each other, and the area under the curves (AUCs) is more than 0.98. While
assuring a 0.99 efficiency (true positive rate), the network’s sensitivity (true negative
rate) th reaches 0.85. The highest accuracy reached is about 0.94 for all the three
datasets. See table I for further network performance results. The normalized output
score, namely the network estimated probability that a doublet is true (ptrue) shows
optimal separation between fake and true doublet samples. Both train and test ptrue

distributions are plotted in fig. 4 together with the cut for an efficiency of 0.99. In order
to compare them, a two-sided Kolmogorov-Smirnov test has been performed. This tests
whether two samples are drawn from the same distribution [12]. For both true and fake
histograms, the resulting score is KS ≈ 0.070 corresponding to a p-value pval ≈ 0.961,
that assures us that the two histograms come from the same distribution with a very
high level of confidence.

5. – Conclusions and acknowledgments

In conclusion, the results described show that CNN techniques for mitigating combi-
natorial explosion look very promising and need to be further explored. Ongoing work
includes the verification of the effect on the downstream track reconstruction, the explo-
ration of different hardware architectures for fast inference and the final integration in
the CMS reconstruction framework.
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