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Summary. — Generative adversarial networks are known as a tool for fast simula-
tion of data. Our aim is to research and develop a physical application of these tools
by simulating LHCb hadron calorimeter (HCAL) in order to speed up the Monte
Carlo datasets production.

1. – Lepton flavour universality tests

1.1. Current status for R(D(∗)). – Some of the most interesting phenomena reported by
particle physics experiments in the last few years are the numerous hints of lepton flavour
universality (LFU) violation observed in semi-leptonic B decays. LFU can be tested with
B meson semi-leptonic decays by measuring the ratio of the relative branching fractions
involving different lepton flavour types. An example of such a ratio is known as R(D(∗)):

(1) R(D(∗)) =
B(B → D(∗)τν)

B(B → D(∗)μν)

Recent measurements [1] have shown an enhancement of the ratio defined in eq. (1)
compared to the Standard Model (SM) prediction [2]. Currently the world average of
the combined measurements of R(D(∗)) deviates from the SM prediction by 3.62 σ [3].

This might hint to a LFU-violating contribution of New Physics (NP) origin that
couples mainly to the third generation of quarks and leptons, enhancing the b → τ
transition.

1.2. The R(D) measurement at LHCb. – The measurement of R(D) is currently ongo-
ing at LHCb and the data collected by the experiment is more than enough to perform
the analysis; a more pressing issue is the availability of Monte Carlo (MC) simulated
data to describe the effect of the detector on the signal and background processes.
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2. – Fast simulation techniques

2.1. The hadron calorimeter . – The LHCb hadron calorimeter (HCAL) [4] implements
∼70% of Level 0 trigger in the presence of high-pt hadrons, and consists of a transversely
segmented plastic scintillator composed by cells of two different sizes. It is characterised
by moderate energy resolution although sufficient for trigger purposes. The simulation
of the LHCb calorimeter response occupies a large fraction of the computing time for
MC production. This work addresses the issue of simulating the LHCb calorimeter by
parametrising its response using fast machine learning simulation techniques.

2.2. Adversarial networks. – The neural network architectures which this work is based
on are known as Deep Convolutional Generative Adversarial Networks (DCGANs) and
were firstly introduced by Ian Goodfellow in ref. [5]. These architectures, which have been
the subject of intense study (see, for example, ref. [6]), are a class of unsupervised neural
networks which consist of two neural networks: a generator (G) and a discriminator (D).
In the training cycle, G learns a function that maps a uniformly distributed variable z
to the dataset x and produces fake samples of data, while D learns to distinguish the
fake samples G(z) from the real dataset. These two networks play a non-cooperative
minimax game with the following value function V (G,D) [5]:

(2) min
G

max
D

V (D,G) = Ex∼pdata(x)logD(x) + Ez∼pz(z)log(1 − D(G(z))).

The training cycle ends when D has a discrimination rate of 50%, and G is trained to
reproduce fake samples distributed as close as possible to the real dataset. The existence
of such equilibrium is not guaranteed but several attempts have been made to help
optimise its search, as shown in ref. [6].

2.3. Generative models for the LHCb HCAL. – In order to parametrise the LHCb
HCAL using neural networks we tested different architectures on the same dataset. This
dataset was generated using PGun and consists of several events in which a single pion
hits the calorimeter at different positions and with variable pt. In order to fully exploit the
advantages of a convolutional network, each event in the dataset is converted to an image.
The values of non-zero pixels and their locations are determined by the reconstructed
energy and location of each calorimeter cell. The architectures tested in this work are
Conditional DGCANs [7] and BicycleGANs [8], since they both provide a control on the
input as well as a stochastic output.

Fig. 1. – Pions Et distribution in the MC truth (left), as reconstructed by the MC (center) and
as simulated by the cDCGAN (right).
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Fig. 2. – Absolute trigger efficiency (left) and relative trigger efficiency (right) comparison be-
tween MC and cDCGAN.

Fig. 3. – Pions Et distribution in the MC truth (left), as reconstructed by the MC (center) and
as simulated by the BicycleGAN (right).

3. – Architectures’ comparison

3.1. Conditional DCGAN (cDCGAN). – We trained a cDCGAN network on a sample
of ∼3.6 × 104 single-pion events with energies spanning 0 � Et � 25GeV. In the case
of the cDCGAN, the network input consists of a string of (x, y,Et). Once the network
training was completed, the network was tested on a test set which is disjoint from the
training set. The results are plotted in fig. 1. In each of the panels the distribution of
the sum over all energies recorded in each cell per event is plotted. The panel on the
left shows the distribution of the true Et as simulated by the tracking, while the central
panel displays the distribution of the HCAL reconstructed Et as simulated by the MC.
The plot on the right shows the reconstructed Et as simulated by the cDCGAN.

Fig. 4. – Absolute trigger efficiency (left) and relative trigger efficiency (right) comparison be-
tween MC and BicycleGAN.
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More importantly our aim is to emulate the HCAL trigger efficiency, i.e., the ratio
between number of events that fire the trigger and the total number of events. The results
for such comparison is shown in fig. 2. The network took and average of 2.98× 10−3 s to
generate one event on an NVidia Tesla P100 GPU.

3.2. BicycleGAN . – We trained a BicycleGAN [8] on the same dataset. This architec-
ture is more complex than the cDCGAN, as it takes as input images rather than strings.
The comparison between the distributions of total energy per event is shown in fig. 3.

As shown in fig. 4 the emulation of the trigger efficiency is more accurate in the case
of BycycleGAN, although the augmented complexity of the network slows the speed of
production to an average of 4.79 × 10−3 s per event on the same hardware.

4. – Conclusions

As shown in this work, generative adversarial networks provide a useful tool for fast
MC production, although further research is needed in order to assess the scalability of
their application to the simulation of LHCb HCAL response to a full event.
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