Colloquia: IFAE 2018

Micro-TPC reconstruction performance for planar GEM detector with high-rate beam

I. $BALOSSINO(^1)(^2)$ on behalf of CGEM-IT GROUP

⁽¹⁾ INFN, Sezione di Ferrara - Ferrara, Italy

⁽²⁾ Dipartimento di Fisica, Università di Ferrara - Ferrara, Italy

received 31 January 2019

Summary. — A new reconstruction method for the Micro Pattern Gas Detectors (MPGD) has been implemented, called Micro-TPC, and implemented for Gas Electron Multiplier (GEM) detectors. The possible dependence of the drift velocity on the presence of residual charge in high-rate conditions motivated the test performed with planar GEM at MAMI Facility in Mainz. In this work the Micro-TPC technique, the setup and the results of the test beam that allowed to find the optimal working conditions will be presented.

1. – Introduction

Gas Electron Multiplier: GEM detectors were invented by Sauli [1] in 1997. GEMs are built as thin Kapton foil covered by copper and pierced with small bi-conical holes $(50 \,\mu\text{m})$. The electron avalanche multiplication happens inside the holes, where a high field is provided by applying a voltage to the copper layers. In triple-GEM detectors, three GEM foils are placed between an anode and a cathode, as shown in fig. 1.

Micro-Time Projection Chamber: The goal is to calculate the position of the primary ionization points inside the drift gap minimizing the error. This is performed in the following steps (fig. 2) once a cluster is found: 1) extrapolation of the position by measuring the time of arrival of the signal on the anode assuming constant drift velocity; 2) linear fit of all the found positions; 3) position measurement from the fit that corresponds to half gap.

Test beam at MAMI: A check of the Micro-TPC performance in a challenging environment such as the MAinz MIcrotron Facility was performed thanks to the high-rate beam. Here four triple-GEM planar chambers $(10 \times 10 \text{ cm}^2)$ have been tested with two different gas mixtures, Ar:iC₄H₁0 (90:10) and Ar:CO₂(70:30). The chambers could rotate to test the Micro-TPC at different incident angles.

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

Fig. 1. – Avalanche scheme.

Fig. 2. – Micro-TPC reconstruction method.

2. – Results

A description of the results on the parameters that may affect the performance of Micro-TPC in high-rate environment is presented.

Gain: fig. 3 shows that the gain behaviour is compatible with the one of ref. [1]. The gain is stable up to more than 10^6 Hz/cm^2 , then it increases up to 10^7 Hz/cm^2 to drop right afterwards. The possible explanation to this behaviour is correlated to the positive charge accumulation that modifies the electric field and increases the transparency of the GEMs.

Time resolution: It takes into account both the time resolution of the detector itself and the one of the electronics. In both gas mixtures fig. 4 shows the parameter stability with the rate up to $10^7 \,\text{Hz/cm}^2$.

Drift velocity: The drift velocity has been calcualted by the time difference between the first and the last hit strips. The stability of this parameter up to 10^7 Hz/cm^2 validate the method with both gas mixtures, as shown in fig. 5.

Fig. 3. – Gain vs. rate [2].

Fig. 4. – Time resolution vs. rate [2].

still velocity find	+	4	•	4	0	ł	+	\$ \$ \$ \$	**
		+ + ++ + + ++++	+++++						
	Ar CO ₃ (70:30) - dataset 1 Ar CO ₃ (70:30) - dataset 2 - Ar 2O ₃ (70:30) - dataset 2 - Ar 2O ₃ H ₀ (80:11) - dataset 2								
2.5	1	105		1	0°			10 ⁷ Beam Ra	tte Hz

Fig. 5. – Drift velocity vs. rate [2].

3. – Conclusions

The use of the Micro-TPC reconstruction method has been validated at high rate up to $10^7\,\mathrm{Hz/cm^2}.$

REFERENCES

- [1] SAULI F., Nucl. Instrum. Methods A, 805 (2016) 2.
- [2] LAVEZZI L. et al., Performance of the Micro-TPC Reconstruction for GEM Detectors at High Rate, arXiv:1803.07266 [physics.ins-det].