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Summary. — In this paper, we discuss the evaluation of the two-loop virtual cor-
rections to the electron-muon scattering at next-to-next-to-leading order (NNLO)
in QED. These radiative corrections are relevant for the analysis of the MUonE
experiment, recently proposed at CERN. MUonE aims at the high-precision deter-
mination of the QED running coupling constant in the space-like region from the
measurement of the differential cross section of the elastic scattering of high-energy
muons on atomic electrons. The precise theoretical knowledge of QED corrections
to the process will allow to extract from the experimental data the full hadronic
contribution to the running coupling constant. This will provide a new and inde-
pendent determination of the leading-order hadronic correction to the muon g − 2.
As an essential step towards the full theoretical prediction, we present the decompo-
sition of the NNLO virtual amplitude in terms of basic integrals and the analytical
evaluation of the latter by means of differential equations and the Magnus exponen-
tial method. We work in the massless electron approximation, while we retain full
dependence on the muon mass. The presented results are also relevant for crossing-
related processes, such as di-muon production at e+e− colliders, as well as for the
QCD corrections to top-pair production at hadron colliders.

1. – Introduction

In this contribution, we report on the progress in the study of the next-to-next-to-
leading-order (NNLO) virtual corrections to the elastic scattering of muons and electrons
in Quantum Electrodynamics (QED), which we have presented in [1, 2]. In particular,
we discuss the analytic evaluation of the complete set of —planar and non-planar— two-
loop four-point master integrals (MIs) that arise from the relevant Feynman diagrams

(∗) Based on work in collaboration with S. di Vita, S. Laporta, P. Mastrolia, M. Passera,
J. Ronca, U. Schubert and W. J. Torres Bobadilla.
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of order α3 [3]. The present results make the analytic evaluation of the NNLO virtual
amplitude for μe scattering within reach, for instance, in the framework of the adaptive
integrand decomposition [4], as discussed in [5].

Together with the full NLO corrections [6] and the estimation of the NNLO hadronic
effects [7,8], the NNLO QED contribution to μe → μe will play a crucial role in the inter-
pretation of future high-precision experiments, like MUonE, recently proposed at CERN,
which aims at measuring the cross section of the elastic scattering of high-energy muons
on atomic electrons as a function of the negative squared momentum transfer [9-11]
with statistical and systematic uncertainties of the order of 10 ppm. This measurement
will provide the running of the effective electromagnetic coupling in the space-like region
and, as a result, an independent determination of the leading hadronic contribution to
the muon g− 2, which is expected to be competitive with the precision of the traditional
dispersive calculations (see [12] for a review). For a detailed description of the experiment
we refer to [13].

Given the hierarchy between the electron mass me and the muon mass m, me/m ∼
5 · 10−3, we work in the approximation me = 0. We use integration-by-parts identities
(IBPs) [14-16] in order to identify a set MIs, which we analytically computed by means
of the differential equations (DEQs) method [17-19]. The solution of the system of
DEQs for small values of the dimensional regulator ε = (4− d)/2 in terms of generalised
polylogarithms (GPLs) [20, 21] is facilitated by the identification of a canonical basis of
MIs, in the sense of [22]. Such basis is determined through a well-consolidated procedure,
based on the Magnus exponential [23, 24], which has been successfully applied in the
context of multi-loop integrals involving several kinematic scales [25-28].

The same set of MIs required for μe scattering will allow the determination of the
NNLO QED corrections to the crossing-related process e+e− → μ+μ−. The latter will
be relevant for some of the high-precision studies planned at upcoming low-energy e+e−

experiments, like Belle-II and VEPP-2000, which will target the forward-backward asym-
metry [29] in muon pair production and the determination of the R(s)-ratio [30, 31]. In
addition, due to the me = 0 approximation, the hereby computed MIs constitute a
subset of those needed for the complete QCD corrections to the tt̄-pair production at
hadron colliders [32-34] and, together with the recent result of [28, 35], allow the fully
analytic evaluation of the two-loop amplitude in the light-quark-annihilation channel.
The remaining part of the presentation is organised as follows: in sect. 2 we classify
the relevant four-point integral families, in sect. 3 we discuss the solution of the DEQs
for the associated MIs and in sect. 4 we address the numerical checks and the analytic
continuation of the result. We present our conclusions in sect. 5.

2. – Integral families

We study the box-type two-loop corrections to the scattering process μ+(p1) +
e−(p2) → e−(p3) + μ+(p4), with kinematics p2

1 = p2
4 = m2, p2

2 = p2
3 = 0. The rep-

resentative Feynman diagrams of the 10 relevant four-point topologies Ti are shown in
fig. 1. All these topologies can be organised into 3 distinct integral families Fi, i = 1, 2, 3,
of the type

I [d](a1, . . . , a9) ≡
1
Γ2

ε

(
m2

μ2

)ε ∫
ddk1

iπd/2

ddk2

iπd/2
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1 . . . Da9
9

, ai ∈ Z,(1)
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Fig. 1. – Two-loop integral families for μe → μe.

where k1 and k2 are the loop momenta and Di = q2
i − m2

i correspond to inverse scalar
propagators. We use IBPs to reduce all the integrals belonging to each of the families Fi

to a finite set of MIs:

1) the first (planar) integral family F1, which includes the topologies T1, T2, T3, T7

and T8, is reduced to 34 MIs;

2) the second (planar) integral family F2, which includes the topologies T4, T5, T9 and
T10, is reduced to 42 MIs;

3) the third integral family F3, which corresponds to the single non-planar topology
T6, is reduced to 44 MIs;

We refer to [1,2] for the explicit definition of the integral families Fi and the corresponding
bases of MIs chosen for the computation.

3. – Differential equations

In order to determine the analytic expression of MIs identified through IBPs reduction,
we solve their DEQs in the independent kinematic invariants s = (p1+p2)2, t = (p2−p3)2

and m2. These three dimensionful parameters can be combined into two independent
dimensionless variables x1 and x2 that parametrise (up to a trivial scaling factor) the
full dependence of the MIs on the kinematics. A suitable choice of the differentiation
variables xi can greatly simplify the determination of MIs, as it can be used to remove
non-rational terms in the DEQs. For the integrals under study, we obtain a completely
rational system of DEQs by choosing t = −m2(1 − x2)2/x2 and by parametrising s as
s = −m2x1 for F1, F2 and as (m2 − s − t)/(s − m2) = −x2

1/x2 for as F3.
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3.1. Canonical systems of differential equations. – For each integral family, we derived
canonical systems of DEQs according to the Magnus algorithm described in [23,24]. It is
worth noticing that, for the case of canonical DEQs, the basis change obtained through
the Magnus exponential is equivalent to the Wronskian matrix (formed by the solutions
of the associated homogenous equations), which has been shown to allow extensions to
systems of DEQs involving elliptic solutions [36, 37]. Once combined into a single total
differential, the canonical DEQs in x1 and x2 read

(2) dI(ε, x1, x2) = εdA(x1, x2)I(ε, x1, x2),

where I is a vector that collects the MIs of a given integral family and

(3) dA(x1, x2) =
∑

i

Midlog(ηi(x1, x2)),

with Mi being rational constant matrices. The arguments ηi of the dlog-form define the
so-called alphabet of the DEQs. All MIs are normalised in such a way that they are finite
in the ε → 0 limit, so that I(x1, x2) admits a Taylor expansion in ε,

I(ε, x1, x2) =
∑
n≥0

εn

(
n∑

i=0

Δ(n−i)(x1, x2;x1,0, x2,0)I(i)(x1,0, x2,0)

)
,(4)

where I(i)(x1,0, x2,0) is a vector of boundary constants and Δ(k) the weight-k operator

Δ(k)(x1, x2;x1,0, x2,0) =
∫

γ

dA . . . dA︸ ︷︷ ︸
k times

, Δ(0)(x1, x2;x1,0, x2,0) = 1,(5)

which iterates k-ordered integrations of the matrix-valued 1-form dA along a path γ in
the x1x2-plane. In the presence of a rational alphabet with algebraic roots, the iterated
integrals (5) can be directly expressed in terms of GPLs. For all the three integral families,
the solutions of the system of DEQs is derived in the unphysical region s < 0∧t < 0, where
potential imaginary parts of the solution can originate from the integration constants
only.

3.2. Boundary constants. – The iterative integration of eq. (2) leads to a general so-
lution of the DEQs in terms of GPLs that depends on arbitrary integration constants.
The latter are determined by imposing a suitable set of boundary conditions. On a
limited number of cases, it was possible to fix the integration constants by exploiting
the knowledge of the analytic expression of the MIs in special kinematic configurations,
derived from either direct computation or from the solution of auxiliary, simpler, system
of DEQs. For the majority of the integrals, however, it was sufficient to impose the regu-
larity of the solution at pseudo-thresholds of the DEQs in order to completely determine
the boundary constants, at every order in ε, as a transcendentally uniform combination
of the constants π, ζk and log 2.
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4. – Numerical evaluation and analytic continuation

As a validation of our result, we numerically evaluated the analytic expression of all
MIs by means of the GiNac library [38] and checked them against independent numerical
calculations. The check was performed in the Euclidean region s < 0 ∧ t < 0 where
all planar integrals are real valued. All the MIs, with the only exception of the four-
point non-planar integrals that belong to F3, have been cross-checked against the results
provided by the code SecDec [39]. For the challenging numerical evaluation of the non-
planar integrals we resorted on a different strategy: after identifying an alternative set
of quasi finite MIs in d = 6, we evaluated their Feynman parametric representation by
carrying out as many analytic integrations as possible and by numerically evaluating the
leftover integrals by means of Gauss quadrature. Dimension-shifting identities and IBPs
establish analytical relations between this set of integrals and the original MIs computed
around d = 4 and allow the cross-checks of the numerical result of the chosen basis of
integrals. Once the analytic expression of the MIs in the Euclidean region s < 0∧ t < 0 is
established, all physically relevant kinematic regions can be reached through a consistent
analytic continuation procedure. We addressed the problem in [28], where we provided a
practical prescription for the analytic continuation of the result not only to the kinematic
region relevant for μe-scattering but also to the tt̄-production kinematics.

5. – Conclusions

In this paper, we reported on the analytic evaluation of the two-loop master integrals
needed for the NNLO virtual corrections to μe elastic scattering in QED that has been
presented in [1, 2]. These results pave the way to the evaluation of the NNLO virtual
amplitude, which is currently under investigation [3,5]. The two-loop amplitude will con-
stitute an essential part of the theoretical input required by the ambitious experimental
goal of the MUonE project, which will determine the leading hadronic contribution to
the muon g − 2 by measuring the scattering of high-energy muons on atomic electrons.

∗ ∗ ∗
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number 200020-175595.
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