Colloquia: IFAE 2019

The MUonE experiment: A measurement of the hadronic contribution to the muon g - 2 via μ -e elastic scattering

R. N. $PILATO(^{1})(^{2})$ on behalf of the MUONE COLLABORATION

⁽¹⁾ INFN, Sezione di Pisa - Pisa, Italy

⁽²⁾ Dipartimento di Fisica, Università di Pisa - Pisa, Italy

received 8 June 2020

Summary. — We present the MUONE experimental proposal, which aims to determine the leading-order hadronic contribution to the muon g - 2 using a novel approach, based on the measurement of the hadronic contribution to the running of the electromagnetic coupling constant in the space-like region.

1. – Introduction

The measurement of the muon magnetic anomaly, $a_{\mu} = (g_{\mu} - 2)/2$, presently exhibits a ~3.7 σ discrepancy from the Standard Model prediction [1], representing a possible hint of new physics. On the experimental side, a_{μ} will be measured in the next years at the remarkable accuracy of ~0.14 ppm by two new experiments at Fermilab and J-PARC, improving by a factor of 4 the precision of the most recent result. An improvement is also required on the theoretical prediction, as its uncertainty can become the main limitation for a test of the Standard Model. The accuracy on the Standard Model calculation is limited by the evaluation of the leading-order hadronic contribution a_{μ}^{HLO} , which cannot be computed perturbatively at low energies. For this reason, a_{μ}^{HLO} is traditionally determined by means of a dispersion integral on the annihilation cross section $e^+e^- \rightarrow$ hadrons, which is densely populated by resonances and influenced by flavour threshold effects. These aspects limit the final precision achievable by this method. Nevertheless, the calculation of a_{μ}^{HLO} has reached the accuracy of ~ 0.4%. In order to consolidate the theoretical prediction, it is important to crosscheck this calculation in an independent way.

2. – The MUonE experiment

The MUonE experiment has been recently proposed [2], with the aim to measure a_{μ}^{HLO} using a completely independent approach. It is based on the measurement of the

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

Fig. 1. – Sketch of a single station (image not to scale).

hadronic contribution to the running of the electromagnetic coupling constant $(\Delta \alpha_{had})$ in the space-like region, by means of $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}$ elastic scattering. The measurement of the shape of the differential cross section provides direct sensitivity to $\Delta \alpha_{had}$, and it is carried out by scattering a 150 GeV muon beam on a beryllium target. The M2 beam available at CERN provides muons with the proper energy and an average intensity of $1.3 \cdot 10^7 \ \mu/s$. It allows to collect an integrated luminosity of $1.5 \times 10^7 \ nb^{-1}$ in 3 years of data taking, corresponding to a statistical uncertainty of 0.3% on a_{μ}^{HLO} . This makes the measurement of MUonE competitive with the dispersive approach.

2'1. Experimental apparatus. – The experimental apparatus consists of a repetition of 40 identical stations. A sketch of a single station is shown in fig. 1. It is made up of a 15 mm thick beryllium target, followed by a tracking system with a lever arm of ~ 1 m, which is used to measure the scattering angles with high precision. The tracking system is composed by 3 pairs of silicon strip sensors. In particular, the sensors foreseen for the CMS HL-LHC Outer Tracker in the so-called 2S configuration have been chosen. A sensor is made up of two layers reading the same coordinate. Each layer is 320 μ m thick, with a squared area of 10 × 10 cm² and a pitch of 90 μ m, which allows to obtain an angular resolution of ~20 μ rad. The apparatus is also equipped with an electromagnetic calorimeter, placed downstream all the stations. Its main role is to provide e/μ particle identification. The final optimization of the calorimeter is still under study. Two options are currently considered: PbWO₄ and PbF₂ crystals. A surface of ~ 1 × 1 m² will allow to achieve a full acceptance for electrons in the angular region of interest (scattering angles $\leq 10 \text{ mrad}$).

2[•]2. Systematic uncertainties. – The main challenge of the MUonE experiment is to reach a systematic uncertainty of the same order as the statistical one. For this purpose, the differential cross section must be measured with a systematic uncertainty ≤ 10 ppm. Systematic uncertainties arise both from experimental and theoretical aspects, such as: bad reconstruction of the elastic events, limited control of the experimental conditions, missing contributions in the computation of the theoretical cross section.

2[•]3. *Future plans.* – A Letter of Intent has been submitted in June 2019 to CERN SPSC [3]. Studies on detector optimization, simulations and theory improvements will continue in 2020. The detector construction is expected during CERN LS2 and the plan is to have a pilot run of 3 weeks in 2021. A run with full statistics is envisaged in 2022–24.

THE MUONE EXPERIMENTAL PROPOSAL

REFERENCES

- KESHAVARZI A., NOMURA D. and TEUBNER T., *Phys. Rev. D*, **97** (2018) 114025.
 ABBIENDI G. *et al.*, *Eur. Phys. J. C*, **77** (2017) 139.
 THE MUONE COLLABORATION, *Letter of Intent: the MUonE project*, CERN-SPSC-2019-026 (2019).