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Summary. — Hydrothermal regions experience various phenomena, including
ground deformation and, in the case of calderas, interaction between deep mag-
matic processes and shallow aquifers. The present work considers a source model
consisting of a disk-shaped thermo-poro-elastic inclusion subject to a sudden change
of temperature and pore pressure, embedded in a homogeneous poro-elastic half-
space. We compare semi-analytical solutions for surface displacement with results
from four other source models. The displacement components are similar to those
of a spherical point-like source for a certain choice of geometric parameters, while
they differ from the other models. On the basis of this comparison, we interpret the
results of inversions on ground deformation data of the 1982–1984 unrest episode
at Campi Flegrei caldera, Italy, where the thermo-poro-elastic source provides the
best fit.

1. – Introduction

Hydrothermal regions, sometimes associated with calderas, host a variety of observ-
able phenomena, such as ground deformation, hot springs and seismicity (see, e.g., the
Yellowstone caldera, USA [1]; the Rabaul caldera, Papua New Guinea [2]; the Hengill
volcanic system, Iceland [3]). They are a manifestation of heat and mass transfer towards
the Earth’s surface, due to convection of water and other fluids within the crust, and are
generally connected with hydrothermal processes [4,5]. Such processes involve tempera-
ture and pore-pressure changes of fluids flowing through permeable rocks, but they can
also arise from the inflation/deflation or internal differentiation of a magma chamber, or
the emplacement of a new magmatic body [6,7]. For example, [8] proposed a conceptual
model for ground deformation episodes where a magma volume at shallow depth cools
and crystalizes, releasing pressurized magmatic fluids into a shallow hydrothermal sys-
tem. This leads first to surface uplift and then subsidence, as the flux of fluids decreases

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0) 1



2 L. MANTILONI

Fig. 1. – Scheme of the disk-shaped thermo-poro-elastic inclusion (dotted region), with radius
a and thickness d. It is located at depth c and embedded in a poro-elastic half-space (light
grey region). The inclusion undergoes sudden changes in temperature ΔT and pore pressure
Δp caused by degassing of an underlying magma body (darker region). The median plane of
the disk is drawn with a dotted line. The origin of both the spherical (r, θ, ϕ) and cylindrical
(ρ, ϕ, z) references frames is at x1 = 0, x2 = 0, x3 = c. (Modified from [13]).

over time or the rock permeability rapidly increases when the fluid pressure, exceeding
the local strength of the crust, causes failures in the elastic matrix of the porous medium.
Nonetheless, the discrimination between magmatic and hydrothermal processes is gen-
erally not trivial. Therefore, advancements in the modelling of these phenomena are of
the essence in the comprehension of volcanic hazard.

Traditional approaches to ground deformation modelling in volcanic areas focus on
the surface effects of a deformation source in the crust, which is usually a pressurized
cavity representing a magma chamber or a sill (e.g., a spherical source [9], a penny-
shaped crack [10] or a spheroid [11]), although rectangular dislocations are also considered
(e.g., [12]). The source is typically embedded in a homogeneous, elastic half-space, and
poro-elastic effects (that is, the presence of fluids within the rocks) are often neglected.

A recent work [13] has explored the mechanical effects induced by temperature and
pore-pressure changes within a disk-shaped, horizontal Thermo-Poro-Elastic inclusion
(which is referred to as “TPE” in the following, in accordance with [13]), embedded in
an isothermal, poro-elastic half-space in free drainage conditions (fig. 1). Reference [14]
already considered a spherical, shell-shaped TPE inclusion surrounding a magma cham-
ber, embedded in an unbounded medium and representing a region of permeable rock
being affected by a sudden increase in temperature and pore pressure. This is also the
interpretation of the TPE source proposed in [13] (fig. 1). The authors, however, con-
sider a disk-shaped inclusion, which can better describe a horizontal permeable rock layer
injected with hot and pressurized fluids. More importantly, the free surface boundary
condition is included: this is fundamental if we want to compare model predictions with
measured surface displacement during an episode of unrest in a volcanic region.

In the following we summarize the main results of [13], which was applied to interpret
the displacement field observed during the 1982–1984 unrest episode at Campi Flegrei
caldera in southern Italy. By comparing forward models of displacement from the TPE
semi-analytical solution with other four analytical solutions for magma-filled sources of
deformation, we discuss the better fit obtained using the TPE source model.
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2. – Methods

The constitutive relations of a thermo-poro-elastic medium [15] undergoing changes
of stress τij , temperature ΔT and pore pressure Δp are

eij =
1

2μ

(
τij −

ν

1 + ν
τkkδij

)
+

1

3H
Δpδij +

1

3
αΔTδij ,(1a)

τij = 2μeij + λekkδij −K

(
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)
,(1b)

where H is the Biot’s constant, α the coefficient of thermal expansion, μ the rigidity, ν
the drained isothermal Poisson’s ratio and K = 2μ(1+ν)/3(1−2ν) = λ+ 2

3μ the drained
isothermal bulk modulus of the poroelastic medium. Following eq. (1a), the stress-free
strain e∗ij that the inclusion would sustain if the hosting medium was absent is given by:

(2) e∗ij = e0δij , where e0 =
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3
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As shown by [13], the displacement field in a point x can be obtained as
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∫
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where VS is the volume of the TPE and Gik is the elastic Green’s tensor for a half-space
with drained, isothermal elastic parameters [16].

On the other hand, the associated stress field τij is provided by eq. (1b) and is defined
separately within the inclusion, where τij = τ inij , and outside it, where Δp = 0, ΔT = 0

and τij = τoutij , so that
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we must take particular care when computing ui, eij and τij there.
The Cartesian components of the displacement field ui are retrieved by first evaluating

the sum of Green’s tensor partial derivatives in eq. (3):
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where
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and the intervals of integration are the result of the geometry of the TPE (fig. 1). In
the integrand functions in eq. (5) we can collect separately the terms depending on 1

R3
1
,

which diverge within the volume of the inclusion (Vs), and those depending on powers of
1
R2

, which are bounded within Vs. For this reason, we refer to the terms depending on
1
R3

1
as singular terms (apex s), and to those depending on powers of 1

R2
as non-singular

terms (apex ns).
The displacement field u is thus found by summing up two contributions:

(7) u = us + uns.

The singular contributionus can be interpreted as the gradient of a scalar potential Φ [13]:

(8) us = − e1
4π

∇Φ, with Φ(x) =

∫
VS

1

R1
dv(x′), e1 = e0

1+ ν

1− ν
.

The original volume integral in eq. (5) can be computed by expanding the potential
Φ in Legendre polynomials [13], provided that the thickness d of the cylinder is much
smaller than its radius a (d/a � 1).

It is possible to prove that the integrals of the non-singular terms in eq. (5) cannot
be expressed as components of the gradient of a scalar potential as well, since the dis-
placement field uc as reported in eq. (5) is not irrotational (e.g., [17]). Then, in [13]
the non-singular components of displacement are obtained by performing analytical in-
tegrations and simplifying them into single integrals over one coordinate dx′

i, which are
computed numerically, yielding the non-singular contribution uns to u.

The strain tensor eij = esij + ensij can be also separated into a singular part, esij ,
and a non-singular one, ensij , related to derivatives of us and uns, respectively. The
singular components esij can be obtained analytically from spatial derivatives of the
scalar potential Φ [13], while the non-singular ones are retrieved by analytical spatial
derivatives of uns and semi-analytical computation of the corresponding integrals. The
stress tensor τij can then be retrieved both outside and within the TPE inclusion as
in [13]. In eq. (5) it is worth noticing that displacement, strain and stress induced by a
TPE source scale with the intensity e0 of the isotropic stress-free strain, which in turn
depends on the temperature and pore pressure change occurred within the inclusion due
to the injection of magmatic fluids.

3. – The application to the 1982–1984 Campi Flegrei unrest

The caldera of Campi Flegrei (fig. 2(a)) is located west of the city of Naples, with an
external diameter of about 14 km. The region has hosted volcanic activity since 47000
years ago [18], the last magmatic eruption (Monte Nuovo) dating back to 1538 AD [6], and
has experienced several cycles of subsidence and uplift in historical times (e.g., [6, 19]).
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Fig. 2. – Map and deformation data of the studied area. (a) Map of the Campi Flegrei region.
The black diamond represents the location of the centre of the deformation sources considered
in the inversions. (b) Pattern of uplift measured between January 1982 and June 1983 on the
baseline drawn in (a) as a dashed black line.

More recently, a major unrest episode in 1982–1984 marked the peak of a phase of up-
lift, after which a subsidence phase with much slower rates ensued. A new, ongoing
trend of inflation started in 2005. Both these last phases have seen minor and rapidly
recovered peaks of uplift over the long-term trend [20], and the shape of ground defor-
mation (fig. 2(b)) has always remarkably maintained the same features of the 1982–1984
episode [21].

Different deformation sources have been applied to the 1982–1984 unrest over time:
for instance, [22] envisaged a Mogi source at about 3 km depth beneath the centre of
the caldera, while [23] and [24] considered pressurized penny-shaped horizontal cracks
at a similar depth range. More recently, a mixed mode dislocation with both shear and
tensile components was proposed by [25]. In most cases, these models advocated shallow
(3–4 km deep) magmatic intrusions as the origin of both the 1982–1984 episode and the
more recent ones [7, 26]. Purely magmatic models, however, cannot explain the long-
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Table I. – Results of the inversions and misfits for the models considered in [13] and the pCDM
and Yang models considered here (in italics). In the case of Yang, “a” stands for the semi-major
axis of the spheroid, while in the case of Mogi and TPE it stands for the radius of the respective
sources. Parameters estimated by inversion of surface data are in bold. Both the TPE and the
Yang spheroid have fixed aspect ratios d/a = b/a = 0.3, where “d” is the thickness of the TPE
and “b” the semi-minor axis of the spheroid. For the pCDM, the parameter ΔVr is the potency
of the rectangular dislocations perpendicular to the horizontal axes, while ΔVz is the potency
of the one perpendicular to the vertical axis. The parameter Q = ΔP · a3(1 − ν)/μ estimated
for Mogi is the scaling factor for surface displacement. The value of ΔP for the Mogi model is
retrieved from Q, while for the TPE Δp is retrieved from e0, fixing ΔT = 100 K. The misfit
refers to the sum of the absolute difference between all the predicted and observed data.

Model c ΔVr ΔVz Q ΔP e0 a Δp Total misfit
(km) (m3) (m3) (m3) (MPa) (km) (MPa) (m)

TPE 1.9 – – – – 1.7·10−3 1.9 21 2.904
Mogi 2.7 – – 5.1 ·106 64.1 – – – 3.868
Fialko 2.9 – – – 3 – 2.5 – 4.678
pCDM 3.6 4.0·106 2.0·107 – – – – – 4.722
Yang 2.3 – – – – – 1.7 90 7.649

lasting subsidence observed after the 1982–1984 peak [21], and both seismic tomography
surveys [27] and deep drilling projects [28] found no evidence of shallow magma batches
in the 3–4 km depth range [25].

Results of the inversion of geodetic data performed by [13] for the period June 1980
to June 1983 are reported in table I. For the TPE the aspect ratio in [13] was fixed
to the value providing the minimum misfit (d/a = 0.3), as tests with different values
found that smaller ratios require shallower and wider disks to reproduce the same data.
In addition to the point-source approximation of a spherical pressurized source [9] and
the penny-shaped crack [10] considered in the original work, here we perform a prelimi-
nary inversion with the point Compound Dislocation Model (pCDM) introduced by [12]:
such model considers three mutually orthogonal rectangular dislocations that can repro-
duce deformation sources of any shape and orientation in space, and it can be useful
in providing a first insight into the source geometry which is most likely for our case.
The pCDM inversion retrieves the potencies ΔVi of the three rectangular dislocations,
which are the product of the area of the i-th dislocation and its opening (see [12]). We
fixed the orientation of the dislocations and constrained the potencies of the two dislo-
cations perpendicular to the horizontal axes so that they are equal (ΔV1 = ΔV2 = ΔVr;
ΔV3 = ΔVz). This allows us to deal with an axisymmetric source in analogy with all the
other models we consider, as well as with the same number of parameters of the TPE.

We also perform an inversion with a Yang source (i.e., a vertically dipping prolate
spheroid [11]) using a MatLab implementation of the “Libhalfspace” tool [29]. We chose
to consider only three free parameters (namely, the semi-major axis, depth and overpres-
sure of the spheroid) by fixing the ratio between the semi-minor (b) and semi-major (a)
axes to the same value of the aspect ratio of the TPE (see also table I). In the following
we refer to these models as Mogi, Fialko, pCDM and Yang, respectively, and the results
of the new inversions are also reported in table I. We report here the expression for the
components of displacement in cylindirical coordinates (r;φ; z) employed in [13] for the
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Fig. 3. – Comparison of vertical and radial components of surface displacement along a radial
profile between the TPE and other four models applied to the 1982–1983 surface deformation
data from Campi Flegrei (see fig. 2). The origin of the horizontal axes coincides with the source
centre (black diamond in fig. 2), and the dotted vertical line marks the best-fit TPE radius.
Best-fit values of the inverted parameters were employed for the different models (see table I).

Mogi model (see [9] and [30]):

ur =
ΔPa3

4μ

[
r

R3
1

+ f(r, z)

]
,(9a)
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g(r, z) =

[
−
(
3K + 7μ

3K + μ

)
z + c

R3
2

+
2z

R3
2

− 6z(z + c)2

R5
2

]
,(10b)

where ΔP is the overpressure of the Mogi source, a is the radius, c the depth of its centre
and R1 =

√
r2 + (z − c)2, R2 =

√
r2 + (z + c)2 are the distances of the observation point

from the source and the mirror source centres, respectively.
In order to understand the different ability of the models in reproducing data, we

perform formal modelling of displacement at the Earth surface and compare (fig. 3) the
horizontal and vertical components of the TPE to those of the other four models assuming
the best-fit parameters reported in table I. Given the axial symmetry of the TPE with
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respect to the vertical axis, the resulting displacement components for all the five models
are referred to the cylindrical reference frame (r; φ; z = x3) shown in fig. 1. Since the
TPE results depend on poro-elastic parameters and pressure and temperature changes,
it is important to recall how [13] fixed their values. The elastic parameters in isothermal
and drained conditions of the poro-elastic matrix are set to λ = 4 GPa, μ = 6 GPa
(ν = 0.2) as in [14]. The thermal expansion coefficient of the TPE is α = 3 · 10−5 K−1,
while H = 10 GPa (see eq. (2)): both are characteristic of highly porous rocks [31], which
constitute much of the upper stratigraphy of the Campi Flegrei caldera [8]. Finally, [13]
considered typically ΔT = 100 K within the TPE inclusion. A 100 K temperature jump
is reasonable for the injection of overheated and overpressurized volatiles from a deep
reservoir into a shallower system (fig. 1).

4. – Discussion and conclusions

We consider the disk-shaped TPE source embedded in a poro-elastic half-space which
was proposed by [13] and compare the displacement it induces at the free surface to that
of other four axisymmetric source models (pCDM, Mogi, Fialko and Yang), employing
best-fit parameters (see table I) from inversions carried out in [13] and here on geodetic
data from the 1982–1984 unrest episode at Campi Flegrei.

A first consideration involves the best-fit parameters retrieved for the pCDM
model [12], that is, the potencies ΔVr and ΔVz. The latter is larger than the former
by one order of magnitude. According to the definition of potency in [12] and bearing
in mind that we assumed an axisymmetric source, the ratio ΔVz

ΔVr
is equal to the ratio

between the semi-axis of the rectangular dislocation orthogonal to the x3 = z axis and
the semi-axis of the one orthogonal to the x1 (or equivalently, x2) axis. This implies that
the best-fit pCDM has a very flat geometry, comparable to that of a sill-like (Fialko)
or disk-like (TPE) source, and, on the other hand, deems vertically elongated sources
such as Yang unlikely to explain the observed surface deformation. This conclusion is
corroborated by the value of the misfit for the Yang model in table I, and is compatible
with the considerations of [32], who also applied a vertically dipping prolate spheroid to
the same case study.

Results in table I show that the TPE provides the minimum misfit among the five
models considered here and in [13]. An Akaike test (e.g., [33]) shows that the increase
in the number of parameters for the TPE with respect to Mogi, which yields the second
lowest misfit, is justifed by the misfit improvement.

The displacement components evaluated for the TPE are in good agreement with those
of Mogi (fig. 3(a)). Since Mogi-based models have already fit in good approximation the
geodetic data at Campi Flegrei [26], the similarity between the Mogi and TPE results
brings further evidence that the TPE cannot be ruled out in the interpretation of what
caused the uplift.

The agreement is poorer in the case of Fialko (fig. 3(b)), especially for the horizontal
component. Reference [13] discussed how, when employing best-fit values of parameters,
the TPE reproduces well both horizontal and vertical data, while the Fialko model un-
derestimates horizontal data (see [13], fig. 8). Even though our results do not involve
comparison with the real data, the amplitude of the horizontal component of displace-
ment predicted by the Fialko model is smaller than the one predicted by the TPE. It is
worth mentioning that, according to [34], horizontal data have greater resolving power
among different models. Moreover, since the decrease in amplitudes of displacement
components away from the source centre is slower for the TPE than it is for Fialko, the
TPE model may be better suited to describe situations with non-negligible horizontal de-
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formation at considerable distances from the area of maximum uplift, without requiring
a greater depth (table I).

There is good agreement also between the vertical displacement of the TPE and the
pCDM, while the horizontal component for the pCDM follows a trend similar to the one
of Fialko (fig. 3(c)). On the contrary, the comparison between TPE and Yang (fig. 3(d))
yields poor agreement for both components, especially close to the source centre.

Results of inversion in table I [13] show that in order to obtain 1/3 of the maximum
observed surface uplift during the 1982–1984 unrest at Campi Flegrei, Mogi and Fialko
sources require magma overpressures of ΔP = 64.1 and 3 MPa, respectively, while the
TPE disk requires a pore pressure change of Δp = 21 MPa, for a temperature change
ΔT = 100 K (for the same uplift, the requested Δp decreases with increasing ΔT , see
eq. (2)). We also find that the overpressure required by the Yang source is ΔP = 90
MPa. If we scale these pressure estimates by a factor of 3 to reproduce the maximum
observed uplift in 1982–1984 (1.8 m) and compare them to lithostatic values at ≤ 3 km
depth, we obtain unrealistically high magma overpressures for the Mogi and Yang sources
(ΔP ≈ 190 and 270 MPa, respectively): such value for Mogi is compatible with previous
estimates (e.g., [22,30]). The same scaling also leads to unrealistically high pore-pressure
changes Δp for the TPE, although it is to say that the maximum uplift scales also with
the value of the thickness d, so that a larger aspect ratio d

a could reproduce the maximum
observed uplift with lower Δp. However, besides the hypothesis of small aspect ratios in
the TPE model [13], results of the Yang model suggest that an aspect ratio larger than 1
is not in agreement with data. Fialko, instead, yields much lower overpressure estimation
than all the other models (ΔP ≈ 10 MPa), as confirmed by previous works [24]. However,
as also concluded in [13], the brittle rheology and temperatures met during deep drilling
in nearby wells (400 ◦C at 3 km depth, e.g., [28]) make the presence of a large magmatic
reservoir at 2.9 km depth (table I) unlikely. On these grounds [13], excluded that the
1982–1984 uplift was due exclusively to the hydrothermal processes modeled by the TPE
source, though it could be ascribed to the combined effects of such processes and the
emplacement of magma at shallow depths [25]. Nonetheless, as concluded in [13], the
TPE source could be suited for the modelling of recent, smaller uplift episodes (∼ cm)
at Campi Flegrei, most likely related to shallow hydrothermal processes [35].

Our model considers both poro-elastic and thermo-elastic effects. Temperature
changes are more effective than pore-pressure changes in inducing strain due to the
relative magnitudes of αΔT and Δp/H in eq. (2). According to the TPE source scheme
in fig. 1, [13] assumed the changes in Δp and ΔT to occur suddenly and uniformly over
a specific volume (that is, the TPE inclusion) above the reservoir. Thus, the model ne-
glects fluid migration and it is suited to estimate the contribution to ground deformation
only during a given time interval.

Even though [13] and the present work have stressed the potential of the TPE to
model hydrothermal processes, its solutions could be applied as well to mushy magmatic
reservoirs dealing with injections of new magma, similar to what has been done in other
works (e.g., [36]).

It is to say that a remarkable difference bewteen the TPE and the other four models
considered in [13] and here comes from the evaluation of the stress field, in that only the
former envisages a non-vanishing shear stress component within the source itself. This
promotes very different stress regimes at depth if compared to the other models, but is
not evaluated here. A further limitation of the model presented by [13] arises from the
hypothesis of a small aspect ratio, which limits the exploration of the internal region
of the inclusion. Numerical modelling, however, as already tested in [13] and, recently,
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in [37], can allow us to overcome the problem and enable the representation of TPE
sources with arbitrary shapes. The same could be accomplished as well by considering
multiple, closeby TPE disks with different size and values of e0 (eq. (2)).

We conclude remarking that analytical models as those considered here are of critical
importance in calibrating and assessing the validity of more complex numerical models.
Their calculation speed also makes studying sensitivities, quantifying driving parameters
and studying forecasts and their range of uncertainties much easier than with numerical
models. ∗ ∗ ∗
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