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Summary. — This paper is focused on the optimization of ESPRESSO Radial Ve-
locity follow-up of transiting exoplanets detected by the satellite TESS. We compare
three different types of batch scheduling: one random scheduler and two types of
uniform-in-phase schedulers: one myopic, which selects targets one-at-a-time, and
one non-myopic that efficaciously explores all the possible combinations between
stars to be observed and available time slots.

1. – Introduction

The hunt and the study of extrasolar planets have become one of the hot topics in
astronomical research. Indeed many programs both from the ground and space missions
are ongoing or foreseen [1]. Nowadays the research in exoplanetary science aiming to
answer the many questions about the formation and evolution of exoplanets. In this
perspective, transiting exoplanets are of special interest due to the wealth of data made
available by their particular orbital configuration. Considering that many collaborations
are planning to devote an important amount of their Guaranteed Time Observations
(GTO) for the Radial Velocity (RV) follow-up of the TESS (Transiting Exoplanet Sur-
vey Satellite, e.g., [2]) objects of interest (TOIs), it is clear that this observational effort
must be planned in the most efficient possible way. For instance the ESPRESSO Col-
laboration [3] plans to devote around 32% of its GTO for TOIs follow-up [3]. In light of
this, we focused our work to find optimal strategies for the follow-up of TOIs by adopt-
ing the theory of Bayesian Optimal experimental design. By adapting for the purpose of
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this work the Approximate Coordinate Exchange (ACE) [4], we are able to find optimal
designs for complex and realistic problems with reasonable computational time.

2. – Simulations

The ESPRESSO GTO consists of 273 nights during 4 years, and began on the 1st
of October 2018(1). Mimic the ESPRESSO GTO distribution in ESO periods 102 and
103(2), we simulated the scheduling of 10 different ESPRESSO TOI follow-up, from
the 1st of October 2019 until the 30th of September 2022. Each of these 10 different
distributions consists of 1102 observing slots. This number of time slots is very close to
the fraction (i.e., 30%) that can be used for ESPRESSO GTO TOI follow-up. A sample of
stars for possible ESPRESSO follow-up observations was pre-selected among those stars
considered in the catalogue [5] by demanding: a declination in the interval [−80o, +30o],
an effective temperature, Teff , in the interval [4000, 6000] K, and high surface gravity,
log g > 4.0. We then included in our final sample the 50 brightest stars among those pre-
selected with at least one orbiting planet with a radius below 4R⊕, 3 detected transits and
a transit signal-to-noise greater than 10. In the publicly data available from catalogue [5]
only planets that transit are identified. But, in order to generate realistic simulations of
a RV time series we added extra orbiting planets to each star, non-detectable by TESS.
We used for such purpose the occurrence rates published in [6] and [7]. Their orbital
eccentricities, e, were then randomly drawn from a Beta distribution with parameters
α = 1.03 and β = 13.6 following [8]. Finally, the mean anomaly M0 at the time t0 (when
we start our scheduler), and the argument of periastron, ω, were randomly drawn from a
uniform distribution between 0 and 2π. We ended up with 50 extra planets, distributed
across 35 systems. Once we have obtained our sample of transiting and non-transiting
planets and have drawn 10 different ESPRESSO TOI follow-up we have proceeded to
the simulation of the RV time series associated with each star using the following model:

vr(t) = vsys +

np∑
i=1

vr,i(t) + ε(t),(1)

vr,i(t) = Ki{cos[φi(t) + ωi] + ei cos(ωi)},(2)

ε(t) ∼ N
(
0,
√

σ2
act + σ2

ph + σ2
ins

)
,(3)

where np is the number of planets orbiting the star, Ki is the RV semi-amplitude, ωi is
the argument of periastron, ei is the orbital eccentricity, and φi(t) is the true anomaly
as a function of time, t, calculated from the other orbital parameters, all with respect to
planet i. The noise ε(t) that affects the RV measurements takes the form of a Gaussian
white noise, with a variance equal to the sum of the variances associated with each of the
following three noise components: the stellar activity σact, the photon-noise σph and the
instrumental-noise σins, which we assumed to be about 0.1 m/s [9]. We also associated
to every star a systemic RV relative to the centre of mass of the system, vsys, drawn from
a random uniform distribution between −100 to 100 m/s, roughly the observed range for
stars in the solar neighbourhood [10].

(1) https://www.eso.org/sci/observing/policies/gto policy.html

(2) Telescope time for ESO telescopes is allocated twice a year in periods of 6 months.
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3. – Scheduling strategies

We will compare three distinct scheduling strategies. Two of them, labelled A, are
myopic, i.e., the best schedule is defined sequentially in time. In strategy A1, the star
chosen to be observed at any given time is randomly drawn from all stars in the sample
which can be observed at that time, at an airmass equal or smaller than 2, and with
a Moon separation greater than 30 degree. In strategy A2, in addition to fulfill the
observational constraints used in the previous case, we also want the sampling of the
RV phase-curves of the known transiting planets to be as uniform as possible. This is
achieved through the maximization of the following objective function, able of evaluate
the overall dispersion of points in a given interval

(4) f({xi}) ≡
{

1102∑
i=1

[d(xi)]
−2

}−1/2

,

where d(xi) is the time distance between the observation xi and its nearest neighbour
(including across the orbital phase-curve boundary), as a fraction of the orbital period
of the transiting planet targeted by the observation. In the context of strategy A2, the
best schedule is then also constructed sequentially in time. The third strategy, labelled
B, is non-myopic. In this case, the aim is to compare all possible schedules, across the
full time-span of 3 years, and then choose that which maximizes the objective function,
f({xi}). In this last case, it corresponds to finding the schedule that maximizes the sum
over all stars of the minimum time distance, normalized as a fraction of the orbital periods
of the known transiting planets around each star, between any observation and all others
of the same star. Given the large number of time slots available for scheduling and the
fact that the stars considered are observable during most of any given year, the number
of possible scheduling configurations is huge. Therefore, it is impossible to compare the
values the objective function takes for all such configurations. For that reason, we used
the acebayes R package(3) [4] to find the schedule that maximizes the objective function.
This is done via an approximate coordinate exchange (ACE) algorithm, where a sequence
of conditional one-dimensional optimisation steps are used, as described in [4].

4. – Results and discussion

To perform Bayesian statistical analysis of all simulated RV datasets we used the
open-source software kima(4) [11]. In order to compare the results obtained, we define
the following quantities, with respect to some planet characteristic X, and to a given
simulation: absolute bias, E[X] − Xtrue, relative bias (E[X] − Xtrue)/Xtrue, absolute
accuracy | E[X] − Xtrue |, relative accuracy | E[X] − Xtrue | /Xtrue, absolute precision
σX , and relative precision σX/E[X]. Where Xtrue, E[X] and σX represent, respectively,
the true, expected value and standard deviation ofX. In table I, the absolute and relative
bias, accuracy and precision with which, K, e, M and P , are recovered, averaged over all
transiting and non-transiting planets and simulations, is shown for the three strategies.
Overall, the non-myopic strategy, B, recovers more information about the true values of
K and M for the transiting planets. In comparison, the strategy A2, leads to somewhat

(3) https://cran.r-project.org/web/packages/acebayes

(4) https://github.com/j-faria/kima
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Table I. – In the upper panel the absolute and relative bias are shown, accuracy and precision
with which K, e and mass, M , are recovered, averaged over all transiting planets and simulations,
for the three strategies. The same quantities, as well as the orbital period, P , are provided in
the lower panel with respect to all detected non-transiting planets.

more biased values. We found the myopic strategies lead to a biased estimation (on
average around 3% to 7%) of the mass of the simulated TOIs. In contrast, the non-
myopic strategy is able to provide an unbiased (about 1%) measurement of the masses,
while keeping the relative accuracy and precision around 15% and 22%, respectively.
Averaging over the 10 simulations per strategy, a total of 9.8±0.6, 9.8±0.8 and 10.6±1.2
non-transiting planets are detected using strategies A1, A2 and B, respectively, out of
the 50 that we simulated orbiting our sample of stars.
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