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Clusters morphology by Zernike polynomials

V. Capalbo(1), M. De Petris(1), F. De Luca(1)(2), W. Cui(3), G. Yepes(4)(5),
A. Knebe(4)(5)(6) and E. Rasia(7)(8)

(1) Dipartimento di Fisica, Sapienza Università di Roma - Roma, Italy
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Summary. — The study of the morphology of multiwavelength images of galaxy
clusters is largely used to infer their dynamical state. We presented a novel approach
of morphological analysis based on modelling clusters images with Zernike polynomi-
als (ZPs). We used mock maps of the thermal component of the Sunyaev-Zel’dovich
(tSZ) effect generated for synthetic clusters in THE THREE HUNDRED project,
in the redshift range 0 ≤ z ≤ 1.03. Each tSZ map was modelled with several ZPs, in
order to recover morphological features that could be related to different dynamical
states. We concluded that morphological differences can be quantified by defining
an indicator that includes the contribution of the different ZPs to the fit of the tSZ
maps. The feasibility of this new method is prone to the angular resolution of the
maps. Our results were also correlated with common morphological parameters and
dynamical state indicators applied on the same clusters sample.

1. – Introduction

Galaxy clusters can be used as cosmological probes since their abundance in the Uni-
verse, i.e., the number of clusters of a given mass per Mpc3, and its evolution with
redshift are sensitive to some parameters defining the cosmological model [1]. We need
to correctly estimate the total mass of the clusters, even if it is not a direct observable
and must be inferred by exploiting other quantities that trace its value, at different wave-
lengths. In particular, a few simplified assumptions about the physics of the clusters, such
as the hydrostatic and thermal balance, are generally used to define some observables-
mass relations [2]. However, these conditions not always reflect the real state of the
clusters, which could be in dynamical states far from the equilibrium. Hence, the knowl-
edge of the dynamical state assumes an important role when studying these objects.

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0) 1



2 V. CAPALBO et al.

The morphological analysis of multiwavelenght images is commonly used as indication of
the clusters real state. It consists in applying some parameters to recognize characteristic
features in the distribution of the signal, even if with some limitations due, for example,
to projection effects along the line of sight and limited observational angular resolutions.
Simulation-based analysis are also used to test and direct the correct application of the
different parameters on the observational data.

Here we summarize the results of a work originally presented in [3], which focused on
the development of a new method of morphological analysis of clusters images by means
of Zernike polynomials (ZPs) [4]. We used a set of synthetic galaxy clusters extracted
from hydrodynamical simulations, THE THREE HUNDRED project [5], including 324
massive clusters (M200 > 6 × 1014 h−1M� at z = 0) at different redshifts from 0 up to
1.03. To study the clusters we exploited the thermal component of the Sunyaev-Zel’dovich
(tSZ) effect [6], that is a spectral distortion of the Cosmic Microwave Background due
to inverse Compton scattering between photons and energetic free electrons in the hot
ionized plasma within the clusters. It is quantified with the Compton parameter y:

(1) y(n̂) =
σT kB
mec2

∫
Pe(n̂, l)dl,

where σT is the Thomson scattering cross-section, kB is the Boltzmann constant, me is
the electron mass, c is the speed of light and Pe is the electron pressure integrated along
the line of sight l in the direction n̂. Mock tSZ maps, that are 2D projections of the
Compton parameter, i.e., y-maps, were generated for all the clusters with the PyMSZ
code(1). We analytically modelled them with several ZPs, within a circular aperture
of radius equal to R500(

2), the clusters reference radius, and centred on the y-centroid.
We also applied a smoothing to degrade the signal in the maps and mimic observational
angular resolutions up to 5′.

2. – Zernike polynomials: definition and application

Zernike polynomials are a complete and orthogonal basis of polynomials defined on a
unit circle, useful to model functions in a circular domain. They have several applications
in different fields: adaptive optics [7,8], image analysis and pattern recognition [9], oph-
thalmology and optometry [10], medicine [11]. The work in [3] is their first application
in the galaxy clusters science.

We referred to [7] for the mathematical definition of the ZPs, which result in a product
of a normalization factor N , a radial function R and an angular term:

(2)

{
Zm
n (ρ, θ) = Nm

n Rm
n (ρ) cos(mθ),

Z−m
n (ρ, θ) = Nm

n Rm
n (ρ) sin(mθ),

where Nm
n =

√
2(n+1)
1+δm0

and Rm
n (ρ) =

∑(n−m)/2
s=0

(−1)s(n−s)!

s!
(

n+m
2 −s

)
!
(

n−m
2 −s

)
!
ρn−2s. The polar

coordinates ρ and θ are the normalised radial distance (0 ≤ ρ ≤ 1) and the azimuthal

(1) https://github.com/weiguangcui/pymsz

(2) R500 is the radius within which the overdensity of the cluster is 500 times the critical density
of the Universe at the cluster redshift.
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angle (0 ≤ θ ≤ 2π), respectively, while the index n is the polynomial order and the index
m is the angular frequency, satisfying m ≤ n and n−m = even.

We decomposed each y-map using all ZPs up to the eighth order, namely 45 polyno-
mials (see the ordering sequence defined in [7]), in order to be able to model the different
shapes of the signal at different spatial scales in the maps. For this purpose, we divided
the set of ZPs in two classes, considering their 2D projections: polynomials with a con-
tinuous circular symmetry, that are all terms with m = 0, and polynomials with more
complex patterns due to increasing angular frequency, i.e., all terms with m �= 0. Hence,
the y-maps were expressed as a weighted sum given by

(3) y =

8∑
n=0

n∑
m=0

cnmZm
n ,

where the coefficients cnm are the weights (Zernike coefficients) of the single polynomials.

3. – Results

To show how the Zernike fitting can be used to extract information about the mor-
phology and the state of a cluster, we plot in fig. 1 a bar chart of the resulting coefficients
cnm from the fit of two y-maps. These relate to two clusters at z = 0, namely the #153
(in grey) and #171 (in white) in the catalogue, classified respectively as relaxed and dis-
turbed objects in a previous analysis in [12]. We recall that “relaxed” and “disturbed”
terms are generally used to identify, respectively, clusters in hydrostatic equilibrium and
dynamically active systems far from this condition (e.g., clusters in merging processes).
The filled bars in fig. 1 refer to ZPs with m �= 0, while the hatched bars refer to terms
with m = 0. Note that the first polynomial, Z0

0 = 1, is neglected because the respec-
tive coefficient c00 is simply equal to the mean value of y over the circular aperture.
In addition, to better display the figure, we only show few terms of the fitting. However,

Fig. 1. – Bar chart of coefficients cnm, resulting from a Zernike fitting applied to y-maps (see
eq. (3)) of a relaxed cluster (in grey) and a disturbed one (in white). The Zernike polynomials,
on the x-axis, are ordered as in [7]. The filled and hatched bars refer, respectively, to polynomials
with m �= 0 and m = 0 (see eq. (2)).
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the considerations below are referred to the whole set of ZPs used. We note that the con-
tribution of ZPs with m �= 0 is negligible for the relaxed cluster, while ZPs withm = 0 are
present in both cases. In general, maps of relaxed clusters show regular shapes, mostly
circular, that can be modelled by few ZPs with circular symmetry, i.e., m = 0. On the
contrary, maps of disturbed clusters involve inhomogeneities and small-scale structures,
and require additional polynomials to be correctly described. To quantify the differences
between regular and irregular morphologies, we defined a parameter, C, as follows [3]:

(4) C =
∑

n,m �=0

|cnm|1/2.

We compared the results of the Zernike fitting with a previous analysis made on the same
data set in [12], using as references: i) a combined morphological parameter [13,14]; ii) a
combined 3D dynamical-state indicator, available for hydrosimulated objects [12,15]. By
analysing the whole clusters sample, we obtained a correlation about 78 per cent between
C and the combined morphological parameter, fairly stable at the redshifts considered,
while the correlation with the combined 3D indicator is about 62 per cent at z = 0 and
slightly decreasing with the redshift. In addition, we verified that this method can be
efficiently applied to maps generated with subarcminute angular resolutions when moving
to high-redshift clusters (z � 1).

4. – Conclusions

We used a new approach to study the morphology of galaxy clusters, that is an
analytical modelling of 2D projections maps with the Zernike polynomials. The first
application was on mock maps of the thermal component of the Sunyaev-Zel’dovich
effect, generated for a sample of hydrosimulated clusters. By estimating the contribution
of several polynomials in modelling the clusters maps, we verified that it is possible to
recognize their characteristic shapes, and to correlate the results with more common
morphological and dynamical-state indicators.
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