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Summary. — A popular way to accelerate the sampling of rare events in molecular
dynamics simulations is to introduce a potential that increases the fluctuations of
selected collective variables. For this strategy to be successful, it is critical to choose
appropriate variables. Here we review some recent developments in the data-driven
design of collective variables, which combine Fisher’s discriminant analysis and neu-
ral networks. This approach allows to compress the fluctuations of metastable states
into a low-dimensional representation. We illustrate through different applications
the effectiveness of this method in accelerating the sampling, while also identifying
the physical descriptors that undergo the most significant changes in the process.

Atomistic simulations, and in particular Molecular Dynamics (MD), play an impor-
tant role in many fields of science. However, their application is often hindered by the
presence of high free energy barriers between metastable states, resulting in transitions
that occur on timescales too long to simulate [1]. Several important phenomena fall into
the category of rare events, including phase transitions and chemical reactions, as well
as biological processes such as protein folding and ligand binding.

Accelerating the sampling with collective variables. – Several enhanced sampling meth-
ods have been devised to extend the scope of MD simulations. A large family of these
techniques relies on the identification of a small set of order parameters s, called collective
variables (CVs), which are functions of the atomic positions R [1]. The potential energy
surface U(R) is modified by the addition of an external bias potential V (s(R)) which
enhances the fluctuations of the selected variables by lowering the energetic barriers.
This increases the sampling of the transition region, in turn accelerating the occurrence
of rare events. A popular method is metadynamics [2], in which the bias potential V (s)
is expressed as a sum of repulsive Gaussians that are deposited at the points visited
in the CVs space. In this way, the system is discouraged from re-exploring configura-
tions that have already been visited and can escape local minima. A recent evolution of
metadynamics, called on-the-fly probability enhanced sampling (OPES), builds the bias
potential from an on-the-fly estimate of the probability distribution P (s) [3].

For these methods to be successful, the collective variables must be related to the slow
relaxation modes of the system or, in other terms, to the transition pathways connecting
local minima. Since this information is usually not known beforehand, several approaches

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0) 1



2 LUIGI BONATI

have been proposed to design CVs using information limited to the metastable states.
Machine Learning (ML) methods have risen to prominence in recent years, and there is
no shortage of applications to atomistic simulations [4, 5] and enhanced sampling [6-8].
Both supervised [9] and unsupervised methods [10, 11] have been applied to the search
of data-driven CVs. We discuss here in detail the approaches that exploit Fisher’s linear
discriminant analysis [12, 13], and in particular recent advances in which this statistical
method has been coupled with neural networks [14].

Linear Discriminant Analysis. – Linear Discriminant Analysis (LDA) [15] is a super-
vised method, first developed by Fisher, which is routinely used to perform classification
and dimensionality reduction tasks. LDA seeks for a linear projection of the input fea-
tures into a lower-dimensional space such that the classes are maximally separated. We
illustrate here for simplicity the case of two classes, i.e. two metastable states A and
B. First, we choose a set of descriptors d that can be, for instance, distances, angles,
dihedrals or coordination numbers. We run short MD simulations in basin A and B
and compute the values of such descriptors. We use the average values μA, μB and
the variance matrices ΣA, ΣB of the descriptors to characterize the basins and de-
fine the within-scatter matrix as Sw = SA + SB and the between-scatter matrix as
Sb = (μA−μB)(μA−μB)

T . Fisher’s criterion states that the linear combination w̄ that
optimally separates classes is the one for which the ratio of the two scattering matrices

in the projected space is maximal, i.e. w̄ = arg maxw
wTSb w
wTSw w

.
From a practical perspective, we can recast the above task as a generalized eigenvalue

problem: Sbw̄ = uSww̄, where the eigenvalue u measures the degree of separation of the
two states along the corresponding eigenvector w̄. Once w̄ is found, the one-dimensional
projection s = w̄Td can be used as CV [12,13].

Neural network based discriminant analysis. – While LDA provides a robust method
for finding low-dimensional representations, it suffers from several limitations, the most
important being that it can only provide a linear combination of the given descriptors.
This precludes the application of the LDA CV to complex systems, where several de-
scriptors need to be combined in a nonlinear way to capture the dynamics of the process.
For this reason, we proposed to extend it with neural networks (NNs), similarly to what
has been done in the field of computer science for classification [16]. This is achieved by
using a NN to perform a nonlinear featurization of the input descriptors, and to compress
them into a lower-dimensional space. LDA is then performed in this latent space, and
the eigenvalue of the generalized eigenvalue equation is used as loss function to maximize
the discriminative power of the NN. Further details are reported in [14]. In fig. 1 we
exemplify the behavior of LDA and Deep-LDA in the simple case of two-dimensional
Gaussians. We observe that, due to the nonlinear transformation performed by the NN,
the Deep-LDA CV discriminates the two states better than its linear version.

Before moving on to applications, we summarize the main steps of this method from
a practical viewpoint. Once a set of descriptors has been chosen, the first step is to
simulate short MD trajectories in the metastable states and compute the descriptors’
values. The NN can be trained on these datasets using the Pytorch library, following
the tutorial on Github [17]. Finally, the CV can be used along with enhanced sampling
methods through the open-source library PLUMED [18], taking advantage of an interface
we developed to import Pytorch models. Codes and input files are available also on the
PLUMED-NEST [19] repository with plumID:20.004.
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Fig. 1. – Comparison of LDA (left) and Deep-LDA (right) for a 2D Gaussian toy model. The
points represent the two states, while the lines correspond to the CV isolines. In the case of
LDA, the CV projection, orthogonal to the isolines, is a straight line, while for Deep-LDA it
connects the fluctuations of the two states in a nonlinear fashion. In the insets we report the
density profile along the CVs, to highlight the different discriminative power.

Enhancing the sampling with Deep-LDA. – As an application of the Deep-LDA CV,
we examine the chemical reaction between vinyl alcohol and formaldehyde which has
been studied in ref. [14]. Since the free energy barrier between reactants and products is
on the order of 170 kJ/mol (68 kBT at room temperature), it is impractical to observe
any transition in a MD simulation without resorting to enhanced sampling methods.

The set of descriptors consists of all 40 interatomic distances, whose values are mea-
sured in short simulations (5 ps) of the reactants and products. The Deep-LDA CV is
trained on these datasets, using a NN with 3 hidden layers and {24, 12, 4} nodes per
layer. Further computational details can be found in ref. [14]. The CV is used to accel-
erate sampling in combination with the OPES method, which leads to the observation
of several transitions between the two states. This allows the free energy profile of the
reaction to be computed with great accuracy (fig. 2(a)). This sampling efficiency implies
that the CV, even if based only on the configurations of the metastable states, is able to
capture the concerted reaction mechanism.

Fig. 2. – (a) Free energy as a function of Deep-LDA CV computed from the OPES simulation.
The error, calculated with a block average, is about 1 kJ/mol. (b) Contributions of the descrip-
tors to the CV, computed as in ref. [14], where the three dominant descriptors are highlighted.
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Extracting physical insights from the CVs. – A notable feature of these data-driven
CVs is their ability to highlight the most important descriptors, thereby deepening the
physical understanding of the process. We illustrate this property with two examples.

The first is the chemical reaction described above: in fig. 2(b) the descriptors are
ranked according to their contribution to the CV, from which we can recognize three
dominant distances. This fact is in accordance with the chemical changes that the system
undergoes during the reaction, in which a bond is formed between the two carbon atoms
and, simultaneously, a proton transfer occurs between the oxygen atoms.

The second example is the study of the binding between a calixarene host and a set
of ligands, reported in [20]. The Deep-LDA CV is used to include the effect of water in
the study of the binding process, which is otherwise typically modeled using information
limited to the ligand and the host. The analysis of the descriptors’ weights allows to
understand the role of water in binding and unbinding events, and the inclusion of this
contribution in the CV set results in a very efficient sampling of the process [20].

Conclusions. – The combination of Fisher’s linear discriminant and neural networks
allows the design of data-driven collective variables using information limited to local
minima. This approach has proven effective in accelerating the sampling of different
types of rare events and identifying the most relevant atomic descriptors. It represents
a promising tool for studying complex systems, and can be used as an initial guess for
methods designed to extract CVs from enhanced sampling simulations.
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