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Summary. — Molecular simulations are playing an ever-increasing role, finding
applications in fields as varied as physics, chemistry, biology and material science.
However, many phenomena of interest take place on time scales that are out of
reach for standard molecular simulations. This is known as the sampling problem
and over the years several enhanced sampling methods have been developed to
mitigate this issue. We propose a unified approach that puts on the same footing
two of the most popular families of enhanced sampling methods and paves the
way for novel combined approaches. The on-the-fly probability enhanced sampling
method provides an efficient implementation of such generalized approach, while
also focusing on simplicity and robustness.

1. — Unified approach

We present here in a synthetic fashion a recently developed method, called on-the-
fly probability enhanced sampling (OPES), that implements a unified approach to rare
events sampling in molecular simulations. The method has been introduced in refs. [1]
and [2], where it is described in full detail.

The goal of enhanced sampling is to increase the probability of observing in a simu-
lation certain rare events, and to do so in such a way that it is still possible to retrieve
statistics about the original system. We call target distribution the modified probability
distribution that is sampled instead of the Boltzmann one. Apart for some notable ex-
ceptions such as path sampling methods [3], we can group most of enhanced sampling
into two main families according to how the target distribution is defined.

A first family is the one of methods like umbrella sampling [4] and metadynam-
ics [5]. These methods make use of collective variables (CVs) or order parameters that are
smooth functions of the atomistic coordinates and encode the slow modes of the system.
In this family, the target distribution is defined by requiring that its marginal probability
distribution over such CVs has a given functional form. Typically the marginal probabil-
ity is chosen to be a constant flat distribution, as in adaptive umbrella sampling [6], but
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other choices are possible, such as the well-tempered distribution often used in metady-
namics [7] and the many others that have been explored within the variationally enhanced
sampling method [8].

A second family includes tempering methods like simulated tempering [9] and replica
exchange [10]. These methods define their target distribution as the combination of
slightly different versions of the original system, for example the same system but at
higher temperatures. These target distributions are also known as generalized ensembles
or expanded ensembles [11].

The OPES method can be used to sample either kind of target distributions. It does
so by adding to the potential energy of the system U(x) a bias potential V' (x) such that
the sampled distribution is not the equilibrium Boltzmann distribution, P(x) oc e=#V*),
but the target one, p*8(x). This bias potential is defined as

1) Ve = - log b,

where f is the inverse Boltzmann temperature. The bias potential is not known a priori,
but it is self-consistently learned during the simulation, via an on-the-fly estimate of
the probability distributions. Statistics of the unbiased system can be retrieved via a
reweighting procedure, by assuming that the bias is updated in an adiabatic way. Given

any observable O(x), its ensemble average (O) over the unbiased system can be estimated

with ensemble averages over the sampled biased system (O) = %. In this way also

free energy differences and free energy surfaces can be estimated [1,2].

2. — OPES for collective variables sampling

Given a set of collective variables s = s(x), one can define the marginal probability
P(s) = [ P(x)d[s(x) — s]dx. The well-tempered ensemble with respect to these CVs is
obtained by requiring that the marginal probability of the target distribution is pWT (s) oc
[P(s)]*/7, where v > 1 is known as bias factor. It should be noted that the exact target
distribution p'®(x) is unknown, but this does not constitute a problem. In fact, the
core requirements are that the corresponding bias potential can be explicitly expressed
and that the target distribution is easy to sample, i.e., that the kinetic bottlenecks
between metastable states are removed. This is indeed guaranteed for the well-tempered
distribution, given that the CVs are chosen properly and the bias factor is large enough.
The case of uniform marginal target distribution can be seen as a special case of the
well-tempered one, where v = oc.

When using OPES for CVs sampling we need to estimate P(s). To do so, we use a
weighted kernel density estimation with an automatic kernel-merging algorithm, that is
explained in detail in ref. [1]. We also introduce a regularization term e and a normal-
ization Z over the explored CV-space. At step n the bias, eq. (1), can be written as a
function of the CVs,

2 Vals) = (1= 1/7) glog (5 o).

where P,(s) is the estimate of P(s) obtained via reweighting. Reference [1] presents the
full derivation of this expression.
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Fig. 1. — Marginal probabilities over the ¢ angle and the potential energy U for OPES simulations
of alanine dipeptide with different target distributions. The unbiased distribution as obtained
via reweighting is also shown. For each target distribution the biased CVs are specified.

3. — OPES for expanded ensembles sampling

To define the expanded ensemble target distribution, we first define a class of proba-
bility distributions Py (x) e BUAX) where A can be a parameter (e.g., the temperature)
or a set of parameters, and Uy is the original system potential. For simplicity we only
consider nonweighted expanded ensembles, as done in ref. [2]. The expanded ensemble
contains a discrete set {\} of Ny, parameters such that the corresponding Py (x) have
an overlap in the configuration space. We can write the expanded target distribution
as pray(x) = ﬁ >y Pa(x). One can then define the ezpansion collective variables as

Auy(x) = BUx(x) — BUp(x) and use them to write the bias potential at step n,

)

3 V() = 5 log ( e-AwX”ﬂAFM)

B Ny 5

where AF,,(\) are the estimates of the free energy differences between the unbiased
system Uy and the one at a given A\. These are obtained via on-the-fly reweighting,
similarly to P, (s) in sect. 2, but this time without the need for kernel density estimation
as {A} is a discrete set. The details of the derivation are explained in ref. [2].

Finally, we notice that often it is possible to rewrite eq. (3) so that, similarly to
eq. (2), the bias is a function of only a small number of CVs. For example, in case of a
multithermal expanded target distribution the bias can be expressed as a function of the
potential energy only [2].

4. — Example: alanine dipeptide

As an example we consider alanine dipeptide in vacuum at 300 K, which is a prototyp-
ical system for enhanced sampling. It presents two main metastable basins, that can be
characterized using as CV the torsion angle ¢. The most stable basin contains two min-
ima and lays in the region where ¢ is negative, while the second basin has one minimum
at ¢ ~ 1. In fig. 1 we show the marginal probabilities along ¢ and the potential energy
U obtained from OPES simulations that aim at different target distributions. Despite
being very different, all these target distributions increase the probability of observing
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transitions between the metastable states and make it possible to retrieve via reweight-
ing the underlying Boltzmann probability. The well-tempered (v = 50), fig. 1(a), and
the multiumbrella (43 umbrellas), fig. 1(c¢), both employ a bias that is a function of the
same CV ¢, but they would look similar only in the limit of v = co and many umbrellas
respectively [2]. The multithermal distribution, fig. 1(b), spans a range of temperatures
between 300 and 1000 K, and can be reweighted at any temperature in that range. It
can also be combined with the multiumbrella expansion along ¢, fig. 1(d), as done in
ref. [12].

All the simulation details, together with the inputs and the trajectories are available
online on the PLUMED-NEST repository (www.plumed-nest.org, plumID:21.006) [13].

5. — Conclusion

We presented a target distribution perspective on enhanced sampling and the on-the-
fly probability enhanced sampling method, that have been developed in refs. [1,2]. OPES
is a general and flexible method that can be used to sample different types of target
distributions. It is also easy to use and robust with respect to suboptimal collective
variables [14]. It has been implemented as a contributed module in the open source
library PLUMED [15,16], and has been already used for various applications [17-21]. We
believe OPES can be a handy tool for anyone interested in enhanced sampling while also
having the potential of supporting novel types of target distributions.
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