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Summary. — The Lambert-Beer-Bouguer law refers to the decay of the intensity
of a radiation travelling through a dissipative medium. Due to the simple phe-
nomenology and to the easiness of the realization of an experimental apparatus for
its verification and measure, such law represents, from a didactic point of view, a
powerful tool to illustrate the basic features of the exponential decay behaviour to
undergraduate students. This paper describes how such purpose can be reached by
employing simple equipment and very accessible formalism.

1. – Introduction

The exponential decay describes the behaviour of many natural phenomena [1, 2],
finding application also in very wide and general fields such as transients in electronics,
radioactive decays, chemical reaction kinetics, diffusion phenomena (including pandemic
dynamics). Actually, from the mathematical point of view, the exponential decay is the
solution of a differential equation describing a very common occurrence: the equation
describing a quantity I decreasing as a function of a variable x, whose decrease rate
(dI/dx) is directly proportional to the current value of the quantity I itself,

(1)
dI

dx
= −αI.

In eq. (1), α is a positive constant, quantifying the decay rate (if the independent
variable x is the time, the inverse of α is often referred to as the characteristic decay

(∗) E-mail: roberto.dicapua@unina.it

Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0) 1



2 F. FONTANA et al.

time). The general solution of eq. (1) is the function

(2) I(x) = I(0)e−αx,

where I(0) is the value of I at x = 0. Equation (2) represents the exponential decay law.
Among the many phenomena described by eq. (2), we selected the absorption of light
during its propagation inside a dissipative medium as a prototypal example to illustrate
to undergraduate students some aspects of such important law, because of the easiness
of the realization of the experiment and because of its effectiveness in illustrating the
transition from the discrete to continuous approach.

2. – Results and discussion

In the case of absorption of light, eq. (2) is the Lambert-Beer-Bouguer law [3]; in it, I
is the intensity of light as a function of the coordinate x along the propagation direction,
x = 0 representing the separation between the air (where the light comes from) and
the medium, and α represents the absorption coefficient (characteristic of the medium,
and, in general, depending of the light wavelength, but constant on x if the medium is
homogeneous). We proposed, in our classrooms, an experiment to verify the Lambert-
Beer-Bouguer law by using simple instrumentation, whose basic components were: a
commercial halogen lamp as a light source, a standard digital lux-meter for intensity
measurements, Plexiglas prisms as (discrete) components of the optical medium. For the
following remarks, it is important to underline that the exit face of each prism was covered
with a tape to “artificially” increase the absorption coefficient to an easily detectable level.
Further details (for example, on the specific features of the equipment, or on the details to
produce incident plane waves) can be found in ref. [4]. The measurements as a function
of the coordinate x can be realized by simply changing the number np of consecutive
plexiglass prisms and measuring any time the intensity at the end of the series: the
corresponding x value is the sum of the thicknesses of the employed prisms (np·L if all
the prisms have the same thickness L). An example of experimental results measured
by using prisms with equal thicknesses, is reported in fig. 1(a), where I is normalized
to I(0) (measured without prisms) and x is normalized to the single prism thickness,
L. The experimental points are well fitted by an exponential decay law, confirming the
Lambert-Beer-Bouguer law, and the absorption coefficient can be easily estimated as the
opposite of the slope of the plot of ln(I/I(0)) vs. x (shown in the inset of fig. 1(a)), which
linearizes the exponential trend. Under this point of view, this is a useful experimental
exercise and a check of a physical law for a laboratory course.

A further step is to consider a remark that we often received from the students in
different form. Let us consider eq. (1) in terms of relative variation (loss) of intensity,
dI/I, as a function of the traversed path inside the material, dx. The j -th “small” prism
can be considered as our elementary piece of material (a didactic locution often used in
the physics textbooks); in this respect, being Ij the intensity of the light emerging from
the j -th prism, it is natural to consider dI = ΔIj = Ij−Ij−1, and dx = L. Consequently,
eq. (1) reads

(3)
Ij − Ij−1

Ij−1
= −αL.
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Fig. 1. – (a) Experimental data of light intensity I (normalized to I(0)) vs. x (normalized to
the prism thickness L) inside the series of Plexiglas prisms; in the inset, the same data plot in
logarithmic scale for the intensity. (b) Estimations of α values through the discrete approach
described in the main text; the horizontal dotted line indicates the estimation obtained with
the exponential decay fit.

Equation (3) would give a simple method to infer α from the measurement on a single
prism, since the other quantities in it (the entering and emerging light intensities and
the thickness L) are easily measurable. The data acquired for the exponential plot of
fig. 1(a) already contain the measurements of the intensities entering and emerging in
each prism, and the (same) thickness is known. We are therefore already able to compute
α through eq. (3) on each cube: Figure 1(b) is a plot of such estimations, compared with
the estimation of α from the exponential law as previously described (represented by a
horizontal line in fig. 1(b)). As can be seen, this method largely fails, giving a systematic
underestimation of the absorption coefficient.

To shed light on what is occurring, through experimental checks rather than employing
mathematical demonstrations, we proposed to the students to repeat the measurements,
and the comparison between the results coming from the exponential fit and from the
single cube evaluation, by changing the following details: 1) using the same kind of
prisms, but with half thickness; 2) replacing the tape that we had used to increase α, as
described above, with a more transparent one, therefore reducing the effective α value.
Note that both expedients have the effect to reduce the product α · L, which, according
to eq. (3), implies a reduction of the relative intensity loss in each cube. The consequence
is a stronger reduction of the relative underestimation of the absorption coefficient with
the discrete approach.

To be more quantitative: in the first version of the experiment we had α · L ≈ 0.45
and we got an α underestimation of about 20%; with prism of half thickness we had
α · L ≈ 0.21 with an α underestimation of about 10%; with a more transparent tape we
had α · L ≈ 0.15 with an α underestimation of about 7%.

Despite the simplicity of the employed instrumentation, the accuracy of the performed
experiments (together with the systematicity of the trend of the results) is good enough
to dissipate the idea that the discrepancy between the estimations produced by the expo-
nential fit and the discrete evaluation could be due to mere experimental errors or fluctu-
ations. However, such doubt (that can be justifiable in undergraduate students) can be
definitely cancelled by numerical simulations of I(x) through the Lambert-Beer-Bouguer
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law for different values of the product α ·L, i.e., repeating the two kind of estimation on
dataset without errors. Example of such simulations are reported in ref. [4], and were
illustrated to students.

From these observations, we can assert that the observed discrepancy between the two
estimations of α entirely lies in the discrete nature of the second approach, whose results
coincide with the one inferred from the exponential decay fit only when α ·L � 1: which,
exactly, corresponds to the continuous limit. Equation (3) suggests that the relative
intensity loss per unit length should be independent on the length of the path and
equal to the absorption coefficient. The developed checks and considerations, however,
demonstrated that it is true that such value is independent on the path, but it approaches
the right α value only when α · L � 1.

The effectiveness of our approach in dissipating the above mentioned doubt was quan-
titatively tested by a questionnaire on 65 undergraduate students in Physics (the physics
of the problem had been already illustrated to them). Among several questions, we asked
also about the validity of an α estimation from only two experimental points: 62 students
answered “yes, it is formally valid; simply, the experimental accuracy is less than the one
obtained by a regression on several points”, and only 2 gave the correct answer “no, there
is a systematic error because of the non-linearity of the relation” (only one student chose
a different wrong answer among those proposed). After having illustrated the experiment
and the remarks that we developed in this study, by reproposing the question we got an
essentially reversed result (59 students over 65 marked the correct answer).

It can be actually useful to observe once more that plotting the light intensity on
a logarithmic scale produces a linear plot, in which the angular coefficient estimations
obtained by the globally interpolating line or by considering pairs of points are obviously
the same (inside, of course, the experimental errors). This means that the discretization
process “works” if applied to the logarithmic version of eq. (3), i.e., Δln(Ij) = −α · L.
So, the underestimation produced by eq. (3) arises because Δln(Ij) and ΔIj/Ij−1 are the
same only in the limit of small variation of I, which is exactly what the mathematical
analysis teaches.

3. – Conclusions

By performing the described experiment and developing the illustrated considera-
tions, a student can understand how a discrete experimental estimation on single con-
stituting units can produce affordable results only if the mathematical continuity limit
is approached. The exponential decay is very effective in illustrating the non-obvious
differences between the discrete and the continuous approach; and the Lambert-Beer-
Bouguer law, in turns, allows an easy test of the exponential decay behaviour, offering
very simply measurable quantities, an understandable way to transit from the discrete
to continuous (in the experiment, such transition is practically realized when α ·L � 1),
and an easy comparison between the results for the calculation of discrepancies.
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