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                                                         Abstract 

In this paper, we analyze various equations concerning the Isoperimetric Theorems. 

We describe the new possible mathematical connections with some sectors of  

Number Theory, String Theory and cosmological parameters 
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From Wikipedia: 

In mathematics, a ball is the space bounded by a sphere. It may be a closed ball 

(including the boundary points that constitute the sphere) or an open ball (excluding 

them). 

 

 

We propose that some equations concerning the “balls”, can be related with various 

parameters of some cosmological models as the “Multiverse” and the “Eternal 

Inflation” linked to it, which provides that space is divided into bubbles or patches 

whose properties differ from patch to patch and spanning all physical possibilities.  

 

In 1983, it was shown that inflation could be eternal, leading to a multiverse in which 

space is broken up into bubbles or patches whose properties differ from patch to 

patch spanning all physical possibilities. 

When the false vacuum decays, the lower-energy true vacuum forms through a 

process known as bubble nucleation. In this process, instanton effects cause a 

bubble containing the true vacuum to appear. The walls of the bubble (or domain 

walls) have a positive surface tension, as energy is expended as the fields roll over 

the potential barrier to the true vacuum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Multiverse
https://en.wikipedia.org/wiki/Nucleation
https://en.wikipedia.org/wiki/Domain_wall_(string_theory)
https://en.wikipedia.org/wiki/Domain_wall_(string_theory)
https://en.wikipedia.org/wiki/Domain_wall_(string_theory)
https://en.wikipedia.org/wiki/Surface_tension
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From:  

Isoperimetric Theorems, Open Problems and New Results – Francesco Maggi – 

ICTP, Trieste, 22 February 2017 

We have: 

 

 

 

((3-1)^(13/8)) / ((5-1)^(3/2))*sqrt((5+3-1)/(3*5*x*y))*2^(-12) = 

c/(R^2)*(3/5)^(9/4)*5^(1/4) 

Where uk = x ; ωh = y ;  k = 3 and  h = 5  

Input 

 

 
 

 

Exact result 

 

 
 

 

Alternate form assuming c, R, x, and y are real 
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Alternate form 

 

 
 

 

Alternate form assuming c, R, x, and y are positive 

 
 

 

Real solutions 

 

 

 

 

 

 

 

 

 

 

Solution for the variable y 
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From the following alternate form: 

 

we obtain:  

(5 sqrt(35) R^2 sqrt(1/(x y)))/(73728 2^(3/8) 3^(3/4)) 

Input 

 

 
 

 

Exact result 

 

 
 

 

Real roots 

 

 

 

 

 

Properties as a function 

Domain 

 

 

Range 
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Parity 

 

 

Series expansion at x=0 

 

 

Series expansion at x=∞ 

 

 

Derivative 

 

 

Indefinite integral 
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Global minimum 

 

 

Limit 

 

 

 

 

Series representations 
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From the above derivative 

 

we obtain, from the result:  

-(5 sqrt(35) R^2 (1/(x y))^(3/2) y)/(147456 2^(3/8) 3^(3/4)) 

Input 
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Exact result 

 

 
 

 

Real roots 

 

 

 

 

 

Properties as a function 

Domain 

 

 

Range 

 

 

Parity 

 

 

 

 

Series expansion at x=0 
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Series expansion at x=∞ 

 

 

Derivative 

 

 

Indefinite integral 

 

 

Limit 
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Series representations 

 

 

 

 

 

 

From the above derivative: 

 

we obtain, from the result:  

 

Input 

 
 

 

Exact result 
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Real roots 

 

 

 

 

 

Properties as a function 

Domain 

 

 

Range 

 

 

Parity 

 

 

 

 

Series expansion at x=0 
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Series expansion at x=∞ 

 

 

Derivative 

 

 

Indefinite integral 

 

 

Limit 
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Series representations 

 

 

 

 

 

 

For: 

αs = [−π/2, π/2] , 

 

|c| ≥ 1/4, 
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From: 

 

(1-1/16)*Pi/6 * 1/2 

Input 

 

 
 

 

Result 

 
 

 

Decimal approximation 

 
R = 0.245436926…. 

 

 

Property 

 

 
 

 

Alternative representations 
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Series representations 

 

 

 

 

 

 

Integral representations 
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We have: 

 

 

For  C = 8 :   θ = 1/16 ;  R = 0.245436926 

 

From the previous derivative 

 

we obtain, from the result:  

(175 sqrt(35) ((5Pi)/64)^2 sqrt(1/(x y)))/(393216 2^(3/8) 3^(3/4) x^4) 

Input 

 

 
 

 

Exact result 
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3D plots 

Real part                (figures that can be related to the D-branes/Instantons) 

 

 

 
 

 

Imaginary part 
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Contour plots 

Real part 

 

 
 

Imaginary part 

 

 
 

 

Roots 

 
 

 

Properties as a function 

Domain 
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Range 

 

 

Parity 

 

 

 

 

Series expansion at x=∞ 

 

 

Partial derivatives 

 

 

 

 

Indefinite integral 
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Limit 

 

 

 

 

From the above result 

 

For x = -0.4  and  y = -4 , we obtain : 

 

(4375 sqrt(35) π^2 sqrt(1/(-0.4* -4)))/(1610612736 2^(3/8) 3^(3/4) *(-0.4)^4) 

Input 

 

 
 

 

Result 

 
0.00165689…. 
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Series representations 
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Inverting 

 

we obtain: 

  

1/(((4375 sqrt(35) π^2 sqrt(1/(-0.4* -4)))/(1610612736 2^(3/8) 3^(3/4) *(-0.4)^4))) 

Input 

 
 

 

 

Result 

 
603.541…. 

 

 

Series representations 
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From the previous alternate form: 

 

we obtain also:  

 

(5 sqrt(35) ((5Pi)/64)^2 sqrt(1/(x y)))/(73728 2^(3/8) 3^(3/4)) 

Input 
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Exact result 

 

 
 

 

 

3D plots 

Real part              (figures that can be related to the D-branes/Instantons) 

 

 

 
 

 

Imaginary part 
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Contour plots 

Real part 

 

 
 

 

Imaginary part 

 

 
 

Roots 

 
 

 

Properties as a function 

Domain 
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Range 

 

 

Parity 

 

 

Series expansion at x=0 

 

 

Series expansion at x=∞ 

 

 

 

Partial derivatives 
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Indefinite integral 

 

 

Limit 

 

 

 

 

 

Series representations 
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From the above result 

 

for  x = y = 0.001, we obtain: 

 

(125 sqrt(35) π^2 sqrt(1/(0.001* 0.001)))/(301989888 2^(3/8) 3^(3/4)) 

Input 

 

 
 

 

Result 

 
0.00817569…. 
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Series representations 

 

 

 

 

 

 

 

Inverting, we obtain: 

1/((((125 sqrt(35) π^2 sqrt(1/(0.001* 0.001)))/(301989888 2^(3/8) 3^(3/4))))) 

Input 
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Result 

 
122.314…. 

 

 

Series representations 
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From the sum between the two previous inverted expressions, we obtain: 

 

1/(((4375 sqrt(35) π^2 sqrt(1/(-0.4* -4)))/(1610612736 2^(3/8) 3^(3/4) *(-0.4)^4))) + 

(((1/((((125 sqrt(35) π^2 sqrt(1/(0.001* 0.001)))/(301989888 2^(3/8) 3^(3/4))))))))+Pi 

Input 

 

 
 

 

Result 

 
728.996… ≈ 729 

 

 

 

Series representations 
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35 
 

 

 

From which: 

10^3+1/(((4375 sqrt(35) π^2 sqrt(1/(-0.4* -4)))/(1610612736 2^(3/8) 3^(3/4) *(-

0.4)^4))) + (((1/((((125 sqrt(35) π^2 sqrt(1/(0.001* 0.001)))/(301989888 2^(3/8) 

3^(3/4))))))))+Pi 

Input 
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Result 

 
1729 

 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

 

 

Series representations 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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(((10^3+1/(((4375 sqrt(35) π^2 sqrt(1/(-0.4* -4)))/(1610612736 2^(3/8) 3^(3/4) *(-

0.4)^4))) + (((1/((((125 sqrt(35) π^2 sqrt(1/(0.001* 0.001)))/(301989888 2^(3/8) 

3^(3/4))))))))+Pi)))^1/15 

Input 

 

 
 

 

Result 

 

1.64381497748…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… (trace of the instanton shape) 

 

 

From the result of the previous partial derivative: 

 

we obtain: 

 

-(125 sqrt(35) π^2 x (1/(x y))^(3/2))/(603979776 2^(3/8) 3^(3/4)) 

Input 
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Exact result 

 

 

 

 

3D plots 

Real part               (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 
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Contour plots 

Real part 

 

 

 

Imaginary part 

 

 

Roots 

 

 

Properties as a function 

Domain 
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Range 

 

 

Parity 

 

 

Series expansion at x=0 

 

 

Partial derivatives 

 

 

 

 

Indefinite integral 
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And from: 

 

we obtain: 

 

(125 sqrt(35) π^2 (1/(x y))^(3/2))/(1207959552 2^(3/8) 3^(3/4)) 

Input 

 

 

 

Exact result 

 

 

 

 

 

3D plots 

Real part               (figures that can be related to the D-branes/Instantons) 
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Imaginary part 

 

 

 

Contour plots 

Real part 

 

 

 

Imaginary part 
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Roots 

 

 

Properties as a function 

Domain 

 

 

Range 

 

 

Parity 

 

 

Series expansion at x=0 

 

 

 

Series expansion at x=∞ 
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Partial derivatives 

 

 

 

 

 

Indefinite integral 

 

 

 

Limit 

 

 

 

 

 

Series representations 
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And again, from: 

 

 

-(125 sqrt(35) π^2 (1/(x y))^(5/2) y)/(805306368 2^(3/8) 3^(3/4)) 

 

Input 

 

 

 

 

Exact result 
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3D plots 

Real part               (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 

 

 

 

 

Contour plots 

Real part 
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Imaginary part 

 

 

 

Alternate form assuming x and y are positive 

 

 

 

Roots 

 

 

Properties as a function 

Domain 

 

 

 

Range 

 

 

Parity 
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Series expansion at x=0 

 

Series expansion at x=∞ 

 

 

Partial derivatives 

 

 

 

 

Indefinite integral 

 

 

Limit 
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Series representations 

 

 

 

 

 

 

 

 

 

From: 

 

 

For x = -0.8  and  y = -3 , we obtain: 
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-(125 sqrt(35) π^2 (1/(-0.8* -3))^(5/2) *(-3))/(805306368 2^(3/8) 3^(3/4)) 

Input 

 

 

 

Result 

 

1.03074…*10
-6

 

 

Series representations 

 

 

 

 

 

 

 

From which: 

1/((-(125 sqrt(35) π^2 (1/(-0.8* -3))^(5/2) *(-3))/(805306368 2^(3/8) 3^(3/4))))^20 * 

((1/2 (5 e^π + π + log(16) + 3 log(π) + 3 tan^(-1)(π)))) 
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Input 

 

 

 

 

Result 

 

0.351599…*10
122

 ≈ ΛQ  

The observed value of ρΛ or Λ today is precisely the classical dual of its quantum 

precursor values ρQ ,  ΛQ in the quantum very early precursor vacuum UQ as 

determined by our dual equations. With regard the Cosmological constant, 

fundamental are the following results:  Λ = 2.846 * 10
-122

  and  ΛQ = 0.3516 * 10
122

   

(New Quantum Structure of the Space-Time - Norma G. SANCHEZ - arXiv:1910.13382v1 

[physics.gen-ph] 28 Oct 2019) 

 

 

Alternative representations 
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Series representations 
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Integral representations 
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Continued fraction representations 
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From: 

SHARP STABILITY INEQUALITIES FOR THE PLATEAU PROBLEM - G. 

De Philippis & F. Maggi - j. differential geometry 96 (2014) 399-456  

 

We have that: 

 

 

 

 

 

 

From: 

 

 

 

 

 

x* (h*k)/(m-1) * R^(m-1) / ((h-1)^((k-1)/2)) * y 

 

Input 
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Result 

 

 

 

Alternate form 

 

 

 

Roots 

 

 

 

 

 

 

 

 

 

 

 

 

Derivative 
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Indefinite integral 

 

 

Limit 

 

 

 

 

 

Series representations 
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For:   k = 3;  h = 5 ;  m = 8 

 

From: 

 

 
 

 

(3*5 x y (5 - 1)^((1 - 3)/2) 2^(8 - 1))/(8 - 1) 

 

Input 

 

 
 

 

Result 

 

 
 

 

3D plot                (figure that can be related to a D-brane/Instanton) 
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Contour plot 

 

 
 

 

Geometric figure 

 
 

 

Properties as a function 

Domain 

 

 

 

Range 

 

 

Parity 
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Partial derivatives 

 

 

 

 

Indefinite integral 

 

 

Definite integral over a disk of radius R 

 

 

Definite integral over a square of edge length 2 L 

 

 

 

For  x = y = 0.5 : 

 

 

(480*0.5*0.5)/7 

 

Input 

 

 
 

 

Result 
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Repeating decimal 

 
17.142857 

 

 

We have: 

 

  
 

 

 

 
 

From: 

 
 

for:   k = 3;  h = 5 ;  m = 8 

 

 

(5*3)/(8-1) * (2^(8-1))/(((5-1)^(7/2))) 

 

Input 

 

 
 

Exact result 

 

 
Decimal approximation 

 
2.142857142…. 
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We have: 

 

 

 

 
 

 

 

For:   k = 3;  h = 5 ;  m = 8 
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From: 

 

 
 

 

Sqrt(2^13((5-1)/(3-1))*(5*3)/(8-1)*1/(3-1)^0.25) 

 

Input 

 

 
 

 

Result 

 
171.82162803…. 

 

 

 

From the algebraic sum of the three above expressions, after some calculations, we 

obtain: 

 

12*((-(((480*0.5*0.5)/7) + ((5*3)/(8-1) * (2^(8-1))/(((5-1)^(7/2)))) - (Sqrt(2^13((5-

1)/(3-1))*(5*3)/(8-1)*1/(3-1)^0.25))))-8)-(2Pi) 

 

Input 

 

 

 

Result 

 

1728.15…. 
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This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

 

Series representations 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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(1/27(12*((-(((480*0.5*0.5)/7) + ((5*3)/(8-1) * (2^(8-1))/(((5-1)^(7/2)))) - 

(Sqrt(2^13((5-1)/(3-1))*(5*3)/(8-1)*1/(3-1)^0.25))))-8)-(2Pi)))^2-Φ 

 

Input 

 

 

 
 

 

Result 

 
4096.08…. ≈ 4096 = 64

2
 

 

 

 

 

 

(12*((-(((480*0.5*0.5)/7) + ((5*3)/(8-1) * (2^(8-1))/(((5-1)^(7/2)))) - (Sqrt(2^13((5-

1)/(3-1))*(5*3)/(8-1)*1/(3-1)^0.25))))-8)-(2Pi))^1/15 

 

Input 

 

 
 

 

Result 

 

1.643761200788…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… (trace of the instanton shape) 
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We have: 

 

 
 

 

From: 

 

 

 

(8sqrt3*16)/(sqrt3) 

Input 

 

 
 

 

Result 

 
128 

 

From which: 

27*1/2*(((8sqrt3*16)/(sqrt3)))+1 

Input 
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Exact result 

 
1729 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

 

((27*1/2*(((8sqrt3*16)/(sqrt3)))+1))^1/15 

Input 

 

 
 

Result 

 
 

 

Decimal approximation 

 

1.6438152287…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… (trace of the instanton shape) 

 

 

(1/2*(((8sqrt3*16)/(sqrt3))))^2 

Input 

 

 
 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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Exact result 

 
4096 = 64

2
 

 

 

 

From: 

 
STABILITY INEQUALITIES FOR LAWSON CONES  - Zhenhua Liu -   

arXiv:1711.06927v6 [math.DG] 22 Aug 2018 

 

We have that 
 

 
 
 

((1/16(u-v)*v^0.25*(27u^2-123uv+98v^2)))/((((1/16*sqrt(v)*(9u^2-

34uv+49v^2)))))^(3/2) 

 

Input 

 

 

 

 

Result 
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3D plots 

Real part                (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 
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Contour plots 

Real part 

 

 

 

Imaginary part 
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Expanded forms 

 

 

 

 

 

Alternate forms assuming u and v are positive 

 

 

 

 

Real roots 
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Roots for the variable u 

 

 

 

 

 

 

Series expansion at u=0 

 

 

Series expansion at u=∞ 

 

 

 

 

 

 

 



78 
 

Derivative 

 

 

Indefinite integral 

 

 

 

From: 

 

 

(4 (-27 u^3 v^1.75 + 2541 u^2 v^2.75 - 8297 u v^3.75 + 5831 v^4.75))/(v (9 u^2 - 34 

u v + 49 v^2)^2 sqrt(sqrt(v) (9 u^2 - 34 u v + 49 v^2))) 

Input 
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Result 

 

 

 

3D plots 

Real part                (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 

 

 

 

 

 

 

 

 

 

 



80 
 

 

Contour plots 

Real part 

 

 

 

Imaginary part 

 

 

 

Alternate form assuming u and v are real 

 

 

 

Alternate forms 
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Alternate form assuming u and v are positive 

 

 

Expanded forms 
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Real roots 

 

 

 

 

 

 

 

 

 

 

Roots for the variable u 
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Series expansion at u=0 

 

 

Series expansion at u=∞ 

 

 

Derivative 
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Indefinite integral 

 

 

From: 

 

 

(24 (81 u^4 v^1.75 - 11358 u^3 v^2.75 + 56320 u^2 v^3.75 - 72754 u v^4.75 + 

14847 v^5.75))/(v (9 u^2 - 34 u v + 49 v^2)^3 sqrt(sqrt(v) (9 u^2 - 34 u v + 49 v^2))) 

Input 
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3D plots 

Real part            (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 

 

 

 

Contour plots 

Real part 
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Imaginary part 

 

 

 

Alternate form assuming u and v are real 

 

 

 

Alternate forms 

 

 

 

 

 

Alternate form assuming u and v are positive 
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Expanded forms 
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Real roots 

 

 

 

 

 

 

 

 

 

 

Roots for the variable u 
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Series expansion at u=0 

 

 

Series expansion at u=∞ 
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Derivative 

 

 

Indefinite integral 

 

 

From: 

 



91 
 

 

-(24 (2187 u^5 v^1.75 - 407511 u^4 v^2.75 + 2711610 u^3 v^3.75 - 5131410 u^2 

v^4.75 + 1600091 u v^5.75 + 1798153 v^6.75))/(v (9 u^2 - 34 u v + 49 v^2)^4 

sqrt(sqrt(v) (9 u^2 - 34 u v + 49 v^2))) 

Input 

 

 

 

3D plots 

Real part            (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 
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Contour plots 

Real part 

 

 

 

Imaginary part 

 

 

 

Alternate form assuming u and v are real 
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Alternate forms 

 

 

 

 

 

Alternate form assuming u and v are positive 
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Expanded forms 
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Series expansion at u=0 

 

 

Series expansion at u=∞ 
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Derivative 

 

 

Indefinite integral 

 

 

 

 

From: 

 

 
 

 

-(24 (2187 u^5 v^0.5 - 407511 u^4 v^1.5 + 2711610 u^3 v^2.5 - 5131410 u^2 

v^3.5 + 1600091 u v^4.5 + 1798153 v^5.5))/(9 u^2 - 34 u v + 49 v^2)^(9/2) 

 

 



97 
 

Input 

 

 

 

3D plots 

Real part              (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 

Contour plots 

Real part 

 

 

 

Imaginary part 

 

 

 

Alternate form 
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Expanded form 

 

 

 

Roots 

 

 

 

 

 

 

 

 

v = 0.270764 u 

 

 

 

Roots for the variable u 
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Series expansion at u=0 

 

 

Series expansion at u=∞ 
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Derivative 

 

 

Indefinite integral 

 

 

From: 

 











































2

3

2

1

2

3

2

1

22

i
uv

i
vu

pvuvu

 

For u = -v(1/2+(i*sqrt3)/2) ;  v = -u(1/2+(i*sqrt3)/2) 
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-(24 sqrt(-u(1/2+(i*sqrt3)/2)) (2187 (-v(1/2+(i*sqrt3)/2))^5 - 407511 (-

v(1/2+(i*sqrt3)/2))^4 *(-u(1/2+(i*sqrt3)/2))+ 2711610 (-v(1/2+(i*sqrt3)/2))^3 (-

u(1/2+(i*sqrt3)/2))^2 - 5131410 (-v(1/2+(i*sqrt3)/2))^2 (-u(1/2+(i*sqrt3)/2))^3 + 

1600091 (-v(1/2+(i*sqrt3)/2)) (-u(1/2+(i*sqrt3)/2))^4 + 1798153 (-

u(1/2+(i*sqrt3)/2))^5))/(9 (-v(1/2+(i*sqrt3)/2))^2 - 34 (-v(1/2+(i*sqrt3)/2))( -

u(1/2+(i*sqrt3)/2)) + 49 (-u(1/2+(i*sqrt3)/2))^2)^(9/2) 

 

Dividing the above long expression: 

-(24 sqrt(-u(1/2+(i*sqrt3)/2)) 

Input 

 

 
 

 

Exact result 

 

 
 

 

Alternate form 

 

 
 

 

For   u = -1 : 

-24 sqrt(((sqrt(3) i)/2 + 1/2)) 

Input 
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Result 

 

 
 

 

Decimal approximation 

 
 

 

Polar coordinates 

 
24 

 

(2187 (-v(1/2+(i*sqrt3)/2))^5 - 407511 (-v(1/2+(i*sqrt3)/2))^4 *(-

u(1/2+(i*sqrt3)/2))+ 2711610 (-v(1/2+(i*sqrt3)/2))^3 (-u(1/2+(i*sqrt3)/2))^2 

Input 

 

 

 

Exact result 
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407511 u((sqrt(3) i)/2 + 1/2) v((sqrt(3) i)/2 + 1/2)^4 - 2711610 u((sqrt(3) i)/2 + 

1/2)^2 v((sqrt(3) i)/2 + 1/2)^3 - 2187 v((sqrt(3) i)/2 + 1/2)^5 

Input 

 

 

 

 

Exact result 

 

 

 

Alternate forms 
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407511 *-((sqrt(3) i)/2 + 1/2) ((sqrt(3) i)/2 + 1/2)^4 - 2711610 *-((sqrt(3) i)/2 + 

1/2)^2 ((sqrt(3) i)/2 + 1/2)^3 - 2187 ((sqrt(3) i)/2 + 1/2)^5 

Input 

 

 

 
 

Result 

 

 
 

 

Decimal approximation 

 
 

 

Polar coordinates 

 
2301912 

 

- 5131410 (-v(1/2+(i*sqrt3)/2))^2 (-u(1/2+(i*sqrt3)/2))^3 + 1600091 (-

v(1/2+(i*sqrt3)/2)) (-u(1/2+(i*sqrt3)/2))^4 + 1798153 (-u(1/2+(i*sqrt3)/2))^5 

Input 
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Exact result 

 

 

 

For  u = -1 ; v = 1 : 

 

-1600091 *-((sqrt(3) i)/2 + 1/2)^4 ((sqrt(3) i)/2 + 1/2) + 5131410 *-((sqrt(3) i)/2 + 

1/2)^3 ((sqrt(3) i)/2 + 1/2)^2 - 1798153 *-((sqrt(3) i)/2 + 1/2)^5 

 

Input 

 

 

 
 

Result 

 

 
 

 

Decimal approximation 

 
 

 

Polar coordinates 

 

1733166 
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(9 (-v(1/2+(i*sqrt3)/2))^2 - 34 (-v(1/2+(i*sqrt3)/2))( -u(1/2+(i*sqrt3)/2)) + 49 (-

u(1/2+(i*sqrt3)/2))^2)^(9/2) 

Input 

 

 

 

Exact result 

 

 

 

 

(-34 *-((sqrt(3) i)/2 + 1/2) ((sqrt(3) i)/2 + 1/2) + 49*-((sqrt(3) i)/2 + 1/2)^2 + 9 

((sqrt(3) i)/2 + 1/2)^2)^(9/2) 

Input 

 

 

 
Result 

 

 
 

 

Decimal approximation 

 
 

 

Polar coordinates 

 
1296√6 
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Polar forms 

 

 

 

Approximate form 

 

 

Alternate forms 

 

 

 

 

 

 

Expanded forms 

 

 

 

 

(24(2301912-1733166))/(1296*sqrt6) 

Input 
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Result 

 

 
 

 

Decimal approximation 

 
4299.807077928…. 

 

 

Alternate form 

 

 
 

 

From: 

 

For  u = 1 ;  v = -1 : 

((1/32*u^0.25*(u-v)(49u^2-72uv+27v^2)))/((((1/32*sqrt(u)*(49u^2-

10uv+9v^2)))))^(3/2) 

 

Input 

 

 

 

Result 
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3D plots 

Real part              (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 
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Contour plots 

Real part 
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Imaginary part 
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Expanded forms 

 

 

 

 

 

Alternate forms assuming u and v are positive 

 

 

 

 

Real root 
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Roots for the variable u 

 

 

 

 

 

Series expansion at u=0 

 

 

Series expansion at u=∞ 

 

 

Derivative 
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Indefinite integral assuming all variables are real 
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From: 

 

 

(-2.82843 u^6 + 19.799 u^5 v - 25.9754 u^4 v^2 + 9.39354 u^3 v^3 - 0.222646 u^2 

v^4 + 0.286259 u v^5)/(u^2.25 (u^2 - 0.204082 u v + 0.183673 v^2)^2 sqrt(sqrt(u) 

(49 u^2 - 10 u v + 9 v^2))) 

Input interpretation 

 

 

 

Result 
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3D plots 

Real part           (figures that can be related to the D-branes/Instantons) 

 

 

 

 

Imaginary part 
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Contour plots 

Real part 

 

 

Imaginary part 

 

 

 

Alternate form assuming u and v are real 
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Alternate forms 
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Expanded forms 
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Alternate forms assuming u and v are positive 
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Derivative 

 

 

From: 
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For u = 1;  v = -1 : 

 

(-2.82843 - 19.799  - 25.9754 - 9.39354 - 0.222646 - 0.286259)/(1^2.25 (1 + 

0.204082 + 0.183673)^2 sqrt(sqrt(1) (49 +10 + 9))) 

Input interpretation 

 

 
 

 

Result 

 
-3.683960519…. 

 

From which: 

1+1/(-(-2.82843 - 19.799  - 25.9754 - 9.39354 - 0.222646 - 0.286259)/(1^2.25 (1 + 

0.204082 + 0.183673)^2 sqrt(sqrt(1) (49 +10 + 9))))^1/3 

Input interpretation 

 

 
 

 

Result 

 

1.6474829612…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… (trace of the instanton shape) 
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(24(2301912-1733166))/(1296*sqrt6) - (((-2.82843 - 19.799  - 25.9754 - 9.39354 - 

0.222646 - 0.286259)/(1^2.25 (1 + 0.204082 + 0.183673)^2 sqrt(sqrt(1) (49 +10 + 

9)))))-233+21+5-Pi/6 

Input interpretation 

 

 

 

Result 

 

4095.9674…. ≈ 4096 = 64
2
 

 

Series representations 
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27(((24(2301912-1733166))/(1296*sqrt6) - (((-2.82843 - 19.799  - 25.9754 - 9.39354 

- 0.222646 - 0.286259)/(1^2.25 (1 + 0.204082 + 0.183673)^2 sqrt(sqrt(1) (49 +10 + 

9)))))-233+21+5-Pi/6))^1/2 

Input interpretation 
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Result 

 

1727.99313…. ≈ 1728 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

 

Series representations 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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((27(((24(2301912-1733166))/(1296*sqrt6) - (((-2.82843 - 19.799  - 25.9754 - 

9.39354 - 0.222646 - 0.286259)/(1^2.25 (1 + 0.204082 + 0.183673)^2 sqrt(sqrt(1) 

(49 +10 + 9)))))-233+21+5-Pi/6))^1/2))^1/15 

Input interpretation 

 

 
 

 

Result 

 

1.643751394…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… (trace of the instanton shape) 
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Observations  

 

 

We note that, from the number 8, we obtain as follows: 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

We notice how from the numbers 8 and 2 we get 64, 1024, 4096 and 8192, and that 8 

is the fundamental number. In fact 8
2
 = 64, 8

3
 = 512, 8

4
 = 4096. We define it 

"fundamental number", since 8 is a Fibonacci number, which by rule, divided by the 

previous one, which is 5, gives 1.6 , a value that tends to the golden ratio, as for all 

numbers in the Fibonacci sequence 

 

 

 

 



130 
 

“Golden” Range  

 

 

 

Finally we note how 8
2
 = 64, multiplied by 27, to which we add 1, is equal to 1729, 

the so-called "Hardy-Ramanujan number". Then taking the 15th root of 1729, we 

obtain a value close to ζ(2) that 1.6438 ..., which, in turn, is included in the range of 

what we call "golden numbers" 

 

Furthermore for all the results very near to 1728 or 1729, adding 64 = 8
2
, one obtain 

values about equal to 1792 or 1793. These are values almost equal to the Planck 

multipole spectrum frequency 1792.35 and to the hypothetical Gluino mass 
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Appendix 

 

 

 

From:  A. Sagnotti – AstronomiAmo, 23.04.2020 

 

In the above figure, it is said that: “why a given shape of the extra dimensions? 

Crucial, it determines the predictions for α”.  

We propose that whatever shape the compactified dimensions are, their geometry 

must be based on the values of the golden ratio and ζ(2), (the latter connected to 1728 

or 1729, whose fifteenth root provides an excellent approximation to the above 

mentioned value) which are recurrent as solutions of the equations that we are going 

to develop. It is important to specify that the initial conditions are always values 

belonging to a fundamental chapter of the work of S. Ramanujan "Modular equations 

and Appoximations to Pi" (see references). These values are some multiples of 8 (64 

and 4096), 276, which added to 4096, is equal to 4372, and finally e
π√22 
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We have, in certain cases, the following connections: 

 

 

Fig. 1 

 

 

  

 Fig. 2 
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Fig. 3 

Stringscape - a small part of the string-theory landscape showing the new de Sitter solution as a local 

minimum of the energy (vertical axis). The global minimum occurs at the infinite size of the extra 

dimensions on the extreme right of the figure. 

 

 

 

  Fig. 4 
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With regard the Fig. 4 the points of arrival and departure on the right-hand side of the 

picture are equally spaced and given by the following equation: 

 

                                 

 

we obtain: 

2Pi/(ln(2)) 

Input: 

 

 

 

Exact result: 

 

 

 

Decimal approximation: 

 

9.06472028365…. 

 

Alternative representations: 
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Series representations: 

 

 

 

 

 

 

 

Integral representations: 
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From which: 

 

(2Pi/(ln(2)))*(1/12 π log(2)) 

Input: 

 

 

 

Exact result: 

 

 

 

Decimal approximation: 

 

1.6449340668…. = ζ(2) = 
𝜋2

6
= 1.644934… 
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From: 

Modular equations and approximations to 𝝅 - Srinivasa Ramanujan 

Quarterly Journal of Mathematics, XLV, 1914, 350 – 372 

We have that: 
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We note that, with regard 4372, we can to obtain the following results: 

27((4372)^1/2-2-1/2(((√(10-2√5) -2))⁄((√5-1))))+φ 

Input 

 

 

 
 

Result 

 

 
 

 

Decimal approximation 

 
1729.0526944…. 

 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

 

Alternate forms 

 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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Minimal polynomial 

 

 

Expanded forms 

 

 

 

 

Series representations 
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Or: 

 

27((4096+276)^1/2-2-1/2(((√(10-2√5) -2))⁄((√5-1))))+φ 
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Input 

 

 

 

 

Result 

 

 

 

Decimal approximation 

 

1729.0526944…. as above 

 

Alternate forms 
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Minimal polynomial 

 

 

Expanded forms 

 

 

 

 

Series representations 
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From which: 

(27((4372)^1/2-2-1/2(((√(10-2√5) -2))⁄((√5-1))))+φ)^1/15 

Input 

 

 

 

 

Exact result 

 

 

 

Decimal approximation 

 

1.64381856858…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… 

 

Alternate forms 
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Minimal polynomial 

 

 

Expanded forms 

 

 

 

 

All 15th roots of ϕ + 27 (-2 + 2 sqrt(1093) - (sqrt(10 - 2 sqrt(5)) - 2)/(2 (sqrt(5) - 

1))) 
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Series representations 
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Integral representation 
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From: 

An Update on Brane Supersymmetry Breaking 

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017 

 

 

From the following vacuum equations: 

 

            
 

       
  

 

              
 

 

we have obtained, from the results almost equals of the equations, putting 

 

  instead of  

                                         
a new possible mathematical connection between the two exponentials. Thence, also 

the values concerning p, C, βE and 𝜙 correspond to the exponents of e (i.e. of exp). 

Thence we obtain for p = 5 and βE = 1/2: 

 

𝑒−6𝐶+𝜙 = 4096𝑒−𝜋 18  
 

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan’s 

exponential has a coefficient of 4096 which is equal to 64
2
, while -6C+𝜙 is equal to -

𝜋 18. From this it follows that it is possible to establish mathematically, the dilaton 

value. 
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For 

 

exp((-Pi*sqrt(18))   we obtain: 

 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.6272016… * 10
-6

 

 

Property: 

 

Series representations: 
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Now, we have the following calculations: 

 

 

                                             𝑒−6𝐶+𝜙 = 4096𝑒−𝜋 18   

 

 

                                         𝑒−𝜋 18  = 1.6272016… * 10^-6 

 

from which: 

                            

                                     
1

4096
𝑒−6𝐶+𝜙  = 1.6272016… * 10^-6 

 

 

                  0.000244140625  𝑒−6𝐶+𝜙  = 𝑒−𝜋 18  = 1.6272016… * 10^-6 

 

 

 

Now: 

 

                       ln 𝑒−𝜋 18 = −13.328648814475 = −𝜋 18  

 

 

 

 

And: 

 

(1.6272016* 10^-6) *1/ (0.000244140625) 

 

Input interpretation: 

 

 

 

 

Result: 

 

 

0.006665017... 
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Thence: 

 

                                   0.000244140625  𝑒−6𝐶+𝜙  = 𝑒−𝜋 18   

 

 

Dividing both sides by 0.000244140625, we obtain: 

 

 

                          
0.000244140625

0.000244140625
𝑒−6𝐶+𝜙  = 

1

0.000244140625
𝑒−𝜋 18   

 

                                      

                            𝑒−6𝐶+𝜙  = 0.0066650177536 

 

 

((((exp((-Pi*sqrt(18)))))))*1/0.000244140625 

 

Input interpretation: 

 

 

Result: 

 

0.00666501785… 

 

Series representations: 
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Now: 

 

 

                                          𝑒−6𝐶+𝜙  = 0.0066650177536 

 

                                          = 

 

                                            
 

                                            = 0.00666501785… 

 

From: 

ln(0.00666501784619) 

Input interpretation: 

 

 

Result: 

 

-5.010882647757… 
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Alternative representations: 

 

 

 

 

Series representations: 

 

 

 

 

Integral representation: 

 

 

In conclusion: 

                                   −6𝐶 + 𝜙 = −5.010882647757…  

 

and for C = 1, we obtain: 
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𝜙 = −5.010882647757 + 6 = 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Note that the values of ns (spectral index) 0.965, of the average of the Omega mesons 

Regge slope 0.987428571 and of the dilaton 0.989117352243, are also connected to 

the following two Rogers-Ramanujan continued fractions: 

  

 

 

 

(http://www.bitman.name/math/article/102/109/) 

 

Also performing the 512
th
 root of the inverse value of the Pion meson rest mass 

139.57, we obtain: 

((1/(139.57)))^1/512 

Input interpretation: 

 

 

http://www.bitman.name/math/article/102/109/
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Result: 

 

0.99040073.... result very near to the dilaton value 𝟎. 𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 and to 

the value of the following Rogers-Ramanujan continued fraction: 

 

 

 

From 

Properties of Nilpotent Supergravity 

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 

Sep 2015 

We have that: 

 

We analyzing the following equation: 
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We have: 

 

(M^2)/3*[1-(b/euler number * k/sqrt6) * (φ- sqrt6/k) * exp(-(k/sqrt6)(φ- sqrt6/k))]^2 

i.e. 

V = (M^2)/3*[1-(b/euler number * k/sqrt6) * (φ- sqrt6/k) * exp(-(k/sqrt6)(φ- 

sqrt6/k))]^2 

For k = 2  and  φ = 0.9991104684, that is the value of the scalar field that is equal to 

the value of the following Rogers-Ramanujan continued fraction: 

 

we obtain: 

V = (M^2)/3*[1-(b/euler number * 2/sqrt6) * (0.9991104684- sqrt6/2) * exp(-

(2/sqrt6)(0.9991104684- sqrt6/2))]^2 

Input interpretation: 
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Result: 

 

 

Solutions: 

 

 

Alternate forms: 

 

 

 

 

 

 

 

Expanded form: 

 

Alternate form assuming b, M, and V are positive: 

 

Alternate form assuming b, M, and V are real: 
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Derivative: 

 

 

Implicit derivatives 
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Global minimum: 

 

 

Global minima: 

 

 

 

 

From: 

 

we obtain 

(225.913 (-0.054323 M^2 + 6.58545×10^-10 sqrt(M^4)))/M^2 

Input interpretation: 
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Result: 

 

 

Plots: 

 

 

 

 

Alternate form assuming M is real: 

 

-12.2723  result very near to the black hole entropy value 12.1904 = ln(196884) 

 

Alternate forms: 
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Expanded form: 

 

 

Property as a function: 

Parity 

 

 

Series expansion at M = 0: 

 

 

Series expansion at M = ∞: 

 

 

Derivative: 
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Indefinite integral: 

 

 

Global maximum: 

 

 

Global minimum: 

 

 

Limit: 

 

 

Definite integral after subtraction of diverging parts: 
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From  b that is equal to 

 

 

 

From: 

 

 

we obtain: 

 

1/3 (0.0814845 ((225.913 (-0.054323 M^2 + 6.58545×10^-10 sqrt(M^4)))/M^2 ) + 

1)^2 M^2 

Input interpretation: 

 

 

 

Result: 

 

 

 

 

 



164 
 

Plots:    (possible mathematical connection with an open string) 

 

M = -0.5;  M = 0.2 

 

 

(possible mathematical connection with an open string) 

M = 2 ;  M = 3 

 

Root: 

 

Property as a function: 

Parity 

 

Series expansion at M = 0: 
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Series expansion at M = ∞: 

 

 

 

Definite integral after subtraction of diverging parts: 

 

 

 

For M = - 0.5 ,  we obtain: 

 

 

 

1/3 (0.0814845 ((225.913 (-0.054323 (-0.5)^2 + 6.58545×10^-10 sqrt((-0.5)^4)))/(-

0.5)^2 ) + 1)^2 * (-0.5^2) 
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Input interpretation: 

 

 

Result: 

 

-4.38851344947*10
-16

 

 

 

For M = 0.2: 

 

 

1/3 (0.0814845 ((225.913 (-0.054323 0.2^2 + 6.58545×10^-10 sqrt(0.2^4)))/0.2^2 ) + 

1)^2 0.2^2 

Input interpretation: 

 

 

Result: 

 

7.021621519159*10
-17
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For M = 3: 

 

 

1/3 (0.0814845 ((225.913 (-0.054323 3^2 + 6.58545×10^-10 sqrt(3^4)))/3^2 ) + 1)^2 

3^2 

Input interpretation: 

 

 

Result: 

 

1.57986484181*10
-14

 

 

 

For M = 2: 

 

1/3 (0.0814845 ((225.913 (-0.054323 2^2 + 6.58545×10^-10 sqrt(2^4)))/2^2 ) + 1)^2 

2^2 
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Input interpretation: 

 

 

Result: 

 

7.021621519*10
-15

  

 

From the four results 

7.021621519*10^-15 ;  1.57986484181*10^-14 ;  7.021621519159*10^-17 ; 

-4.38851344947*10^-16 

 

we obtain, after some calculations: 

 

sqrt[1/(2Pi)(7.021621519*10^-15 + 1.57986484181*10^-14 +7.021621519*10^-17 -

4.38851344947*10^-16)] 

Input interpretation: 

 

Result: 

 

5.9776991059*10
-8

  result very near to the Planck's electric flow 5.975498 × 10
−8

 that 

is equal to the following formula: 
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We note that: 

1/55*(([(((1/[(7.021621519*10^-15 + 1.57986484181*10^-14 +7.021621519*10^-17 

-4.38851344947*10^-16)])))^1/7]-((log^(5/8)(2))/(2 2^(1/8) 3^(1/4) e log^(3/2)(3))))) 

Input interpretation: 

 

 

 
 

Result: 

 
1.6181818182… result that is a very good approximation to the value of the golden 

ratio 1.618033988749... 

 

 

From the Planck units: 

Planck Length 

 

5.729475 * 10
-35

  Lorentz-Heaviside value 
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Planck’s Electric field strength 

 

1.820306 * 10
61

 V*m  Lorentz-Heaviside value 

 

Planck’s Electric flux 

 

5.975498*10
-8

 V*m  Lorentz-Heaviside value 

 

 

Planck’s Electric potential 

 

1.042940*10
27

 V  Lorentz-Heaviside value 
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Relationship between Planck’s Electric Flux and  Planck’s Electric Potential 

 

EP * lP  = (1.820306 * 10
61

) * 5.729475 * 10
-35

 

Input interpretation: 

 

 
 

Result: 

 
 

Scientific notation: 

 
 

1.042939771935*10
27

 ≈ 1.042940*10
27

 

Or:   

EP * lP
2
 / lP  = (5.975498*10

-8
)*1/(5.729475 * 10

-35
) 

Input interpretation: 

 

 
 

 

 

Result: 

 
1.042939885417*10

27
 ≈ 1.042940*10

27
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