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Summary. — We provide a brief overview of what is known about quadratic grav-
ity, which includes terms quadratic in the curvatures in the fundamental action. This
is proposed as a renormalizeable UV completion for quantum gravity which contin-
ues to use the metric as the fundamental dynamical variable. However, there are
unusual field-theoretic consequences because the propagators contain quartic mo-
mentum dependence. At the present stage of our understanding, quadratic gravity
continues to be a viable candidate for a theory of quantum gravity.

1. – Introduction

Quadratic gravity is the theory defined by the action(1)
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where κ2 = 32πG, f0, ξ are dimensionless coupling constants and Cμναβ is the Weyl
tensor. We here ignore surface terms and can also write
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In some ways this is the most conservative UV complete quantum theory of gravity in that
it continues to use the metric as the fundamental field variable and is renormalizeable [1-
12]. It is often overlooked in discussions of quantum gravity in favor of options which are
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(1) One can add a cosmological constant, of course, but that does not appear to play a significant
role in the analysis of the theory, so we will not include it here.
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very much more exotic. The reason for this (to be discussed more fully below) is that it
must break at some aspect of our usual formulation of quantum field theory. However
there is not often agreement on what exactly the problem is.

The relevant literature extends over many decades and is somewhat hard to penetrate.
There has been renewed modern interest in the topic. The purpose of the present paper
is to provide an overview of the issues, with of course an emphasis on the work which
we have been doing(2) [11-18]. While some phenomenology has been explored [19, 20],
the emphasis here will be on whether quadratic gravity works as a viable quantum field
theory, and what its novel features are. Because of space limitations, the explanations
and referencing are somewhat abbreviated —more of both can be found in our cited
papers.

2. – The good news

The reason why quadratic gravity is renormalizeable is that the propagators fall as
1/q4 in the UV. The curvature is of second order in derivatives and so the terms which
are quadratic in the curvature are then of fourth order in derivatives. This UV behavior
partially damps the high energy divergences, turning them into renormalizeable ones.
The power counting is done in a more general context in [21]. But it can be seen
in a simple way by observing that the most divergent vertices in the UV come from
the curvature squared terms, and noting that the coefficients of these, f0 and ξ, are
dimensionless. Dimensional analysis then tells us that these terms will not produce the
inverse powers of masses needed to form higher-dimensional operators.

The coupling constant ξ2 is asymptotically free and f2
0 is not, when used with the

signs of eq. (1). Early papers had f2
0 appearing with a different sign in the action, and

then it appeared to be asymptotically free [22, 23]. However, this leads to a high-mass
spin-zero tachyon [5] —that is, a pole at spacelike(3) q2. The signs of eq. (1) are chosen
to avoid tachyons.

3. – The bad news

Källen and Lehmann [24, 25] have told us that propagators have a spectral
representation,

(3) D(q) =
1

π

∫ ∞

0

ds
ρ(s)

q2 − s+ iε
,

with the spectral density ρ(s) being positive definite. The ingredients to this are all
properties which we expect in a quantum field theory: unitarity, causality, positive norm
states, Lorentz invariance, etc. The spectral representation tells us that propagators
cannot fall faster than 1/q2 at large q2, But in quadratic gravity, propagators do fall
faster than this, going as 1/q4. So something has to give —we cannot have all the QFT
properties which we normally expect.

(2) This paper is a distant reflection of a talk presented by JFD at the on-line workshop Quan-
tum Gravity, Higher Derivatives and Non-locality, March 2021, and is to be published in a
special volume on this topic.
(3) Our metric is (+,–,–,–).
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There is a caveat to this argument. The Källen-Lehmann argument does not apply
to propagators in gauge theories. Indeed the gluon propagator in Landau gauge falls
logarithmically faster than 1/q2 [26]. The exception comes because of the unphysical
states which appear when attempting a covariant description of gauge bosons, which
however are gauge artifacts. This exception is relevant to the spin-zero part of the
graviton propagator in quadratic gravity. In this case there is a negative norm massless
pole in covariant gauges, just as there is in normal General Relativity [27]. This is a gauge
artifact. One might hope that the caveat also saves the odd behavior in the spin-two
part of the propagator from being problematic. However, it does not seem to do so. The
spin-two propagator enters into diagrams in the same way as non-gauge propagators do
in other higher-derivative theories, and seems to have the same behavior when analyzed.

The problem can be seen directly. The bare spin-two propagator has the form

(4) iD2(q) =
i

q2 − q4

M2

=
i

q2
− i

q2 −M2
,

with M2 = 2ξ2/κ2. The relative minus sign is required to get the asymptotic 1/q4

behavior. But of course it is the minus sign which signals the problem. However, this
problem could perhaps be manifest in various different ways related to unitarity, stability,
causality, etc. Further work is needed to sort out the implications. The interpretation
that emerges is that causality is the broken ingredient, and that the extra minus sign in
the propagator signals a particle whose propagation is time-reversed from usual particles.

The exploration of higher-derivative field theories goes back to the work by Lee and
Wick in the 1960’s [28-34]. They proposed a higher-derivative version of QED as a way to
make the theory finite. While our motivation here is different, many of the field-theoretic
aspects can be traced back to the Lee-Wick program.

This is probably a good place to point out that it is not clear that all of our traditional
techniques need to produce the same outcome when applied to higher-derivative theories.
The equivalences of Hamiltonian and Lagrangian methods, of canonical and path integral
quantization, and of Euclidean and Lorentzian formulations, have been developed with
standard theories and may have modifications when applied to higher-derivative theories.
Our treatment starts from the Lorentzian quantum path integral over the field variable
with a higher-derivative Lagrangian, including interactions from the start.

4. – Ostrogradsky

Theories with higher time derivatives are often rejected immediately because of the
analysis by Ostrogradsky that says that the classical theory has an instability, with a
Hamiltonian which is not positive definite [35, 36]. However, a classical instability need
not be a quantum one —the Dirac Hamiltonian is a counter-example. In fact, the path
integral treatment of a higher-derivative theory differs from Ostrogradsky’s construction.
In at least some cases, this can avoid the Ostrogradsky instability. This section is a mini-
summary of our paper on this topic using a very simple model to demonstrate this [17].

Ostrogradsky’s construction is designed to find a Hamiltonian whose use in Hamil-
ton’s equations reproduces the Euler-Lagrange equations, which have been derived from
the initial Lagrangian. Theories with higher derivatives have extra degrees of freedom.
Consider for example a theory with a Lagrangian

(5) L(φ, χ) = 1

2
∂μφ∂

μφ− 1

2M2
�φ�φ− gφχ†χ.
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Here, χ represents some scalar field with a normal Lagrangian. In this case, Ostrograd-
sky’s construction chooses the canonical coordinates to be

(6) φ1 = φ, φ2 = φ̇.

Following usual procedures then leads to the Hamiltonian

(7) H = π1φ2 + π2

(
∇2φ−M2π2

)
− L(φ1, φ2,∇2φ−M2π2),

where π1, π2 are the canonical momenta conjugate to φ1, φ2. The instability is visible
in the first term, as π1 can have either sign and there is no compensating factor of π1 in
the rest of the Hamiltonian.

However, the choice of canonical coordinates of eq. (6) seems odd for the quantum
theory. As M2 → ∞ one does not recover the normal result. There is not a perturbative
limit for large M2 as would be used in an effective field theory. Moreover, there is not a
firm reason why Hamilton’s equations in their usual form must be satisfied in the higher-
derivative quantum theory. The Hamiltonian is used in quantum physics, along with the
quantization procedure, to identify energy eigenstates —which is a different objective.
In this case, there is a different outcome.

Path integral quantization starts with

(8) Zφ[χ] =

∫
[dφ]ei

∫
d4x L(φ,χ).

We can introduce an auxiliary field η which, when you integrate it out, reproduces the
initial Lagrangian. This is

(9) L(φ, η) = 1

2
∂μφ∂

μφ− η�φ+
1

2
M2η2 − gφχ†χ.

This results in

(10) Zφ[χ] =

∫
[dφ][dη]ei

∫
d4x[L(φ,η)].

Then we redefine the field using φ(x) = a(x)− η(x) and obtain

Zφ[χ] =

∫
[da]ei

∫
d4x[ 12∂μa∂

μa−gaχ†χ]

×
∫
[dη]e−i

∫
d4x[ 12∂μη∂

μη− 1
2M

2η2−gηχ†χ]

= Za × Zη,(11)

without any approximations.
The second path integral Zη is actually well defined despite the unusual overall factor

of −i. It is just the complex conjugate of our usual Gaussian path integral. One obtains

(12) Zη = Ne
∫
d4xd4y 1

2 gχ
†(x)χ(x) iD−F (x−y) gχ†(y)χ(y).



ON QUADRATIC GRAVITY 5

with

(13) iD−F (x− y) =

∫
d4k

(2π)4
−i

k2 −M2 − iε
e−ik·(x−y)

being the complex conjugate of the usual result. If M is very large, the propagator
becomes local and just leaves a contact interaction (χ†χ)2 which does not destabilize the
theory if such an interaction appeared in the original theory. This satisfies the principle
of decoupling —as M2 → ∞ we should get only shifts in the parameters of the low-energy
Lagrangian and effects suppressed by powers of M2.

We commonly refer to the classical limit as that of � → 0. But this is not really
correct as � is a fixed number. The classical limit is obtained by using those kinematic
and spatial conditions where � is unimportant. The classical limit of this theory is at
low energy and long wavelength where quantum effects are not important. The degrees
of freedom here are a and χ with normal Lagrangians. The theory does not exhibit the
Ostrogradsky instability.

In canonical quantization, the procedure looks different than when using path inte-
grals. While one can use the same field redefinitions, one must also modify the quanti-
zation rules in order to obtain positive energy eigenstates [28, 37,38]. Very roughly, this
means using [a, a†] = −1 instead of the usual rule. But the main point, in both path
integral and canonical quantization, is that the Ostrogradsky construction is not that of
the quantum theory.

The spin-two sector of quadratic gravity appears similar to this example. The inter-
actions are more complicated of course and the theory does not perfectly factorize. But
the path integral has a similar form, and a similar classical limit.

5. – The spectrum

Another misconception about this class of theories is the idea that the massive ghost
carries negative energy. Again, a classical analysis would seem to show this. (For example
the unusual minus sign in Zη of eq. (11) could be interpreted as a negative Lagrangian,
leading to a negative Hamiltonian.) As mentioned, canonical quantization can be modi-
fied to lead to positive energies. One can see the same in a path integral by studying the
production of the massive state, which also yields more information about the nature of
the resonance.

The heavy particle in the spin-2 graviton propagator can be produced by the scattering
of matter particles, generically φ+ φ → R → φ+ φ, where φ is a generic matter particle
(or massless graviton). This coupling to matter also gives the graviton a self-energy —the
vacuum polarization diagram— which contains an imaginary part for timelike momenta
above threshold. The propagator in the relevant region has the form [11]

(14) iD2(q) =
i{

q2 + iε− κ2q4

2ξ2(μ) −
κ2q4Neff

640π2

[
ln
(

|q2|
μ2

)
− iπθ(q2)

]}

and with Neff a number which counts the effective number of light degrees of freedom.
The corresponding spin-two scattering amplitude [12,39] is

(15) T2(s) = −Neffs

640π
D2(s).
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With the correct choice of sign of the coupling ξ2, the resonance happens for timelike
momenta. Since the initial and final φ + φ states carry positive energy, the resonance
also has positive energy. However, the form of the resonance is unusual in two respects.
We can see this by looking at the propagator near the resonance. Expanding eq. (14)
near q2 ∼ M2, with M2 being the real part of the pole location, one finds the form

(16) iD2 ∼ −i

q2 −M2 − iγ
,

with γ > 0. There is the unusual minus sign in the numerator, which is however expected
as already explained in eq. (4). In addition, the imaginary part of the denominator
comes with the opposite sign from a usual resonance. Basically, the result is the complex
conjugate of a usual resonance propagator. This is a characteristic feature of this class
of higher-derivative theories. The combination of the two unusual signs means that the
imaginary part of D2 is the same as a normal resonance —a feature which is important
for unitarity.

Despite the change in sign in the width, the heavy particle exhibits exponential decay
rather than exponential growth. This can be seen by using the time-ordered form of the
propagator after performing the q0 integration,

(17) D2(t, x) = Θ(t)Dfor(x) + Θ(−t)Dback(x),

with

(18) Dfor(t, x) = −i

∫
d3q

(2π)3

[
e−i(ωqt−q·x)

2ωq
− ei(Eqt−q·x)

2(Eq + i γ
2Eq

)
e
− γt

2Eq

]

and

(19) Dback(t, x) = −i

∫
d3q

(2π)3

[
ei(ωqt−q·x)

2ωq
− e−i(Eqt−q·x)

2(Eq + i γ
2Eq

)
e
− γ|t|

2Eq

]
.

Here ωq = |q| for the massless graviton, and Eq =
√

q2 +M2 for the massive resonance.

6. – Causality

How shall we interpret the spectrum described above? The major clues are 1) that
the heavy particle behaves as if it were formed from a path integral using e−iS instead of
e+iS and 2) that the resulting propagators are complex conjugates of normal propagators.
These make sense when we remember that time-reversal symmetry is anti-unitary, i.e.,
involving complex conjugation. Both the path integral and the resonance propagator
are the time-reversed versions of the usual results [15, 16]. This interpretation can be
confirmed by looking at the time-ordered propagators of eqs. (18) and (19). Normal
particles propagate positive energy forward in time, but the heavy resonance propagates
positive energy backwards in time.

It is often not stated, but QFT comes with an arrow of causality [15, 16], which
differentiates the past lightcone from the future lightcone. It is contained in the +iε in
the Feynman propagator, which can be traced back to the use of e+iS in the path integral
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(or to the +i� in canonical commutators). This feature specifies the time direction in
which positive energy reactions proceed(4).

The interpretation is then of a time-reversed unstable particle. Generally we refer to a
propagator with a minus sign in the numerator as a ghost. However, Fadeev-Popov ghosts
come with the usual +iε in the denominator. Our present case is different because of
the opposite sign in the denominator. We have proposed using the phrase Merlin modes
(after the wizard in the Arthurian tales who ages backwards in time) to emphasize this
distinction.

Here is a place where the usual rules of QFT are no longer fulfilled. Causality and an-
alyticity of amplitudes are tightly tied together, and the analyticity property of Feynman
diagrams has been changed. There are now dueling arrows of causality, with the massless
graviton and matter fields carrying the usual directionality, and the heavy Merlin mode
carrying the other. This leads to a violation of causality on scales over which the Merlin
mode propagates. While there are in principle signals of this behavior [31, 33, 40], for
quadratic gravity they are proportional to the Planck time scale, which is far too small
to be observable.

This feature explains the failure of the Källen-Lehmann representation in higher-
derivative theories. Coleman has noted that in this case it is replaced by a different
spectral representation [31]

(20) D(q) =
1

q2 + iε
− β

q2 −M2
r

− β∗

q2 −M∗2
r

+
1

π

∫ ∞

0

ds
ρ(s)

q2 − s+ iε
,

where M2
r and M∗2

r are complex pole locations, β, β∗ are the residues and ρ(s) is
a positive definite spectral function. Note the extra pair of poles which are complex
conjugates of each other. This representation allows the 1/q4 fall-off at large q2 through
cancellations between the various ingredients. The early literature focused on the pair of
complex poles, but there is a third resonance structure in ρ(s) which is a Breit-Wigner–
like form [33,14]. The pole in ρ(s) compensates one of the complex conjugate poles. We
then have two descriptions of the propagator —the original form with one pole and the
Coleman representation with three.

7. – Unitarity

One naturally might worry also about whether unitarity is satisfied in such theories.
After all, there is a negative norm state. Does this appear in the unitarity relation? That
would seem to mess up unitarity.

Actually unitarity does work. We have given a formal proof [12], which is somewhat
dense as it follows Veltman’s largest-time method [41]. But the basic idea is simple. Even
with normal unstable particles, you are not supposed to include the unstable particle
in the unitarity relation. Only the stable particles which appear as asymptotic states
are to be included. This makes sense as the S-matrix deals only with asymptotic in
and out states. But it also seems odd because we are used to dealing with weakly
decaying particles, such as the pion for example, as if they were stable and studying
unitarity without considering their decay products. Nevertheless, the right answer is to

(4) While it is not related to quadratic gravity, we have also pointed out how this feature
explains the arrow of thermodynamics [16].
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only consider fully stable particles in the unitarity relation. This is the classic work by
Veltman [41]. Our intuition works in practice because one can show that in the narrow
width approximation —when the width is very small— the discontinuity of the stable
particles in the initial and final states becomes the same as if we had treated the resonance
as if it were stable [12].

For the Merlin modes we see the same result. Only the normal decay products count
in the unitarity relation. There are no negative norm asymptotic states. Because all of
the in and out states have their normal discontinuities, unitarity is satisfied.

The direct production of the the Merlin resonance in the quadratic gravity described
above is the simplest example. The spin-two scattering amplitude of eq. (15) has the
form

(21) T2(s) =
A(s)

f(s)− iA(s)
=

A(s)[f(s) + iA(s)]

f2(s) +A2(s)
,

with

(22) A(s) = −Neffs

640π
.

It is readily checked that this form satisfies unitarity.
However, there is a complication. The narrow width approximation does not work

exactly in the same way as with a normal resonance. In some loop diagrams, if one
calculates the discontinuity using only the stable decay products, one obtains the usual
unitarity relation, and this has a well-defined narrow width limit. However, if one calcu-
lates these loop diagrams assuming that the Merlin resonance is exactly stable one gets
a different result unless one uses a contour integration that encloses the Merlin pole in
a certain way. This feature has been known for a long time and is referred to as the
Lee-Wick contour [28]. In simple examples it can be implemented, but work is needed
to understand it more fully.

8. – Known unknowns

Despite the aspects which are presently understood, there are still facets of quadratic
gravity which are not known. By modifying QFT even slightly by using quartic propa-
gators, all aspects need to be re-thought. This makes the theory interesting to explore.

We have seen that the Ostrogradsky instability can be avoided in this class of theories
near flat space. However, stability at higher curvatures is not known. Perhaps when the
background curvature becomes of order the mass of the Merlin ghost there could be an
instability. If so, the endpoint of that instability is relevant. It could be a good feature
if the endpoint was a state with smaller curvature, perhaps with radiated particles. It
could be fatal if it implies a runaway to infinite curvature. It is also possible that some
quantum processes could trigger an instability in a way that is not visible in the tree-level
analysis described above.

There also needs to be more work understanding the quantum field theory of quadratic
gravity. We have mentioned the need to use the Lee-Wick contour in certain loop dia-
grams. There may be the need for further modifications in other diagrams. Cutkosky
et al. [32] made an initial exploration of Lee-Wick theories without reaching a satisfactory
conclusion. However, we note that they were studying only the complex conjugate poles
of eq. (20) and did not include the pole in the spectral function, so this study needs to
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be revisited. Presumably, the principle is that the unitary relations, calculated directly,
need to be reproduced by the Feynman diagrams. Alternately, one can perhaps employ
unitarity to reproduce the full amplitudes, as in modern unitarity based techniques. One
of us (GM) has been exploring this promising pathway [42,43].

Anselmi has been exploring the Feynman rules for a similar class of theories, and
has introduced prescriptions which seem to work [7]. There is in principle a difference
between Anselmi’s program and what we have been describing. He defines his theory as
the Euclidean version and tries to find rules for the analytic continuation to Lorentzian.
For us, the fundamental version is Lorentzian and the continuation to Euclidean is just
a way of doing integrals, etc. This again highlights the point that our usual equivalence
between Euclidean and Lorentzian theories comes from our treatment of normal theories
and may be changed in theories with higher derivatives.

It would also be interesting to simulate a related theory with higher derivatives on
a lattice. This would be a Euclidean theory, but it could provide a non-perturbative
insight into the stability of the theories. It is also possible that the quadratic terms in
the curvature could provide a good regularizer in numerical studies which try to simulate
quantum General Relativity, as these terms help improve the high-energy behavior. Using
these as a regulator could then also probe quadratic gravity.

9. – Summary

In some ways, quadratic gravity is a very conservative approach to quantum gravity as
it maintains the paradigm of renormalizeable field theories like the rest of the Standard
Model, and it does not introduce new fields. But it is not totally benign. Some features
of our normal QFTs must be reworked.

We have seen that causality is violated on small scales. For a theory of quantum
gravity this may actually be an expected outcome as it is hard to see how we can maintain
our usual ideas of causality in a fluctuating spacetime [18]. So we feel that this is not a
feature which disqualifies the theory.

Further explorations are still needed, as discussed above. There still could be po-
tentially fatal obstacles. However, several of the standard objections to this class of
theories seem to not be correct. At our present understanding, quadratic gravity can be
a potential UV completion for quantum gravity.
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