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Summary. — With standard Einstein gravity not being renormalizable at the
quantum level there is much interest in studying higher-derivative quantum grav-
ity theories. Thus just as a Ricci-scalar–based action produces a propagator that
behaves as a non-renormalizable 1/k2 at large k2, an action based on the square
of the Ricci scalar behaves as a renormalizable 1/k4 at large k2. An action based
on both the Ricci scalar and its square leads to a renormalizable propagator of the
generic Pauli-Villars form. However, given the form of the Hamiltonian and the
propagator such theories are thought to be plagued by either energies that are un-
bounded from below or states of negative Dirac norm (the overlap of a ket with
its Hermitian conjugate bra). But when one constructs the quantum Hilbert space
one finds (Bender and Mannheim) that in fact neither of these problems is actually
present. The Hamiltonian turns out to not be Hermitian but to instead have an
antilinear PT symmetry, and for this symmetry the needed inner product is the
overlap of a ket with its PT conjugate bra. And this inner product is positive def-
inite. Moreover, for the pure 1/k4 propagator the Hamiltonian turns out not to
be diagonalizable, and again there are no states of negative energy or of negative
norm. Instead there are states of zero norm, non-standard but perfectly acceptable
states that serve to maintain probability conservation. With the locally conformal
invariant fourth-order derivative conformal gravity theory being in this category, it
can be offered as a candidate theory of quantum gravity that is renormalizable and
unitary in four spacetime dimensions.

1. – Pauli-Villars regulator and the seventy-year ghost problem

With the prototype for the higher-derivative gravity studies initiated in [1] being the
Pauli-Villars propagator, we analyze its generic features as they also apply to higher-
derivative gravity itself. In order to regularize the divergences in loop graphs and also to
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implement gauge invariance Pauli and Villars [2] proposed that one replace the standard
one-particle 1/(k2 −M2) propagator by a two-particle second-order propagator

D(k, 2) =
1

k2 −M2
1

− 1

k2 −M2
2

,(1)

so that a 1/k2 asymptotic ultraviolet behavior at large k2 would be replaced by the
more convergent 1/k4, with a quadratically divergent one loop scalar field graph then
becoming only logarithmically divergent. While Pauli and Villars recognized this as a
mathematical procedure, they did not want to rule out that it might be physical. As
conceived, the two particles would be associated with the second-order derivative action

I1 + I2=
1

2

∫
d4x[∂μφ1∂

μφ1 −M2
1φ

2
1 − λφ4

1] +
1

2

∫
d4x[∂μφ2∂

μφ2 −M2
2φ

2
2 − λφ4

2].(2)

Following the insertion of the very specific closure relation

∑
|n1〉〈n1| −

∑
|n2〉〈n2| = I(3)

with its ghostlike relative minus sign into

D(k, 2) =

∫
d4xeik·x[〈Ω1|T [φ1(x)φ1(0)]|Ω1〉+ 〈Ω2|T [φ2(x)φ2(0)]|Ω2〉](4)

we recover (1). Thus ghosts could reduce asymptotic divergences, but at the price of loss
of probability and loss of unitarity.

2. – The Pais-Uhlenbeck oscillator

To explore whether the Pauli-Villars regulator might be physical Pais and
Uhlenbeck [3] replaced the two-field action by a one-field fourth-order derivative action

IS =
1

2

∫
d4x

[
∂μ∂νφ∂

μ∂νφ− (M2
1 +M2

2 )∂μφ∂
μφ+M2

1M
2
2φ

2

]
,(5)

with a fourth-order derivative equation of motion given by

(∂2
t − �∇2 +M2

1 )(∂
2
t − �∇2 +M2

2 )φ(x) = 0,(6)

and associated fourth-order propagator of the Pauli-Villars form

D(k, 4) =
1

(k2 −M2
1 )(k

2 −M2
2 )

=
1

(M2
1 −M2

2 )

(
1

k2 −M2
1

− 1

k2 −M2
2

)
.(7)

So is this theory also not unitary? It has the same propagator structure as the second-
order D(k, 2). If we identify the fourth-order propagator as

(8) D(k, 4) =

∫
d4xeik·x〈Ω|T [φ(x)φ(0)]|Ω〉,
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then the insertion of the ghostlike closure relation given in (3) into 〈Ω|T [φ(x)φ(0)]|Ω〉
would generate the D(k, 4) propagator. So could anything be wrong with this reasoning?

3. – Why something must be wrong and why there must be an underlying
conformal symmetry and a fourth-order derivative action

Consider the Dirac action for a massless fermion coupled to a background geometry
of the form

ID =

∫
d4x(−g)1/2iψ̄γcV μ

c (∂μ + Γμ)ψ,(9)

where the V μ
a are vierbeins, Γλ

μν = (1/2)gλσ(∂μgσν + ∂νgσμ − ∂σgμν) is the Levi-Civita

connection, and Γμ = −(1/8)[γa, γb](V
b
ν ∂μV

aν + V b
λΓ

λ
νμV

aν) is the spin connection that
enables ID to be locally Lorentz invariant. As constructed, and while not designed for this
purpose, Γμ also enables ID to be locally conformal invariant under the local conformal
transformation

V μ
a → e−α(x)V μ

a (x), ψ(x) → e−3α(x)/2ψ(x), gμν(x) → e2α(x)gμν(x).

We thus get local conformal invariance for free. In fact, other than the double-well
potential, the entire SU(3)×SU(2)×U(1) standard model is locally conformal invariant.
Thus if fermion masses are generated dynamically (see, e.g., [4] and references therein),
then the entire standard model would be locally conformal invariant. ’t Hooft [5] has also
argued that there should be an underlying local conformal symmetry in nature. Thus for
a generic ψ → eα+iβψ, gauging β is Yang-Mills, gauging α is conformal gravity. Thus we
can unify SU(3)× SU(2)× U(1) with gravity through real and imaginary local phases.

But local conformal invariance requires that the action in the gravitational sector be
quadratic in the Ricci tensor and scalar and be of the generic form given in (10). To
see this we set the path integral

∫
D[ψ]D[ψ̄] exp(iID) equal to exp(iIEFF), integrate on

ψ and ψ̄, and obtain an effective action with leading term (’t Hooft [6])

IEFF =

∫
d4x(−g)1/2C

[
RμνR

μν − 1

3
(Rα

α)
2

]
,(10)

where C is a log divergent constant. With ID being locally conformal invariant, IEFF

must be locally conformal invariant too, just as is in fact the case [7]. Thus in the
standard model itself we generate the fourth-order derivative conformal gravity action.
So have we lost unitarity? No we could not have, since with the standard model being
ghost free, and with the fermion path integral being equivalent to a one loop Feynman
diagram, then since we cannot change the signature of a Hilbert space in perturbation
theory, conformal gravity must be ghost free too. And indeed if it were not then the
standard model would lose unitarity when coupled to gravity. Thus radiative corrections
to SU(3)×SU(2)×U(1) in an external gravitational field generate fourth-order conformal
gravity whether we like it or not. So we have to deal with conformal gravity one way or
the other.
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4. – So where could things possibly go wrong?

Starting from a c-number propagator we cannot determine the structure of the under-
lying q-number theory. Thus we cannot identify the c-number D(k, 4) with the matrix
element 〈Ω|T [φ(x)φ(0)]|Ω〉 before first constructing the quantum theory. We can of course
construct c-numbers from q-numbers but not vice versa. Thus just because D(k, 2) is
associated with a loss of unitarity it does not mean that D(k, 4) is too. To find out we
need to construct the quantum Hilbert space.

5. – So where do things go wrong?

As noted by Bender and Mannheim [8, 9], the right eigenvacuum of the fourth-order
quantum theory associated with the D(k, 4) propagator obeys H|ΩR〉 = 0. The left
eigenvacuum obeys 〈ΩL|H = 0. In general the left eigenvacuum is only the Hermitian
conjugate of the right eigenvacuum if the Hamiltonian is Hermitian. So is it Hermitian?
This depends on boundary conditions. It turns out that the boundary conditions are
such that the D(k, 4) Hamiltonian is not in fact Hermitian (we cannot integrate by parts
and throw surface terms away). However, it instead is CPT symmetric, and the left
eigenvacuum 〈ΩL| is the CPT conjugate of |ΩR〉. In consequence the D(k, 4) propa-
gator has to be identified with

∫
d4xeik·x〈ΩL|T [φ(x)φ(0)]|ΩR〉, and this propagator is

unitary [8, 9], even as
∫
d4xeik·x〈ΩR|T [φ(x)φ(0)]|ΩR〉 is not.

Since C (charge conjugation) is separately conserved for gravity, H is PT (P is parity,
T is time reversal) symmetric, and thus falls into the class of PT symmetric theories
initiated by Bender (see [10] for a recent overview), with antilinear CPT symmetry being
recognized as being more general for quantum theory than Hermiticity [11]. However,
even though the Hamiltonian is not Hermitian, all the poles of D(k, 4) are on the real
axis. So all energy eigenvalues are real, the hallmark of PT theories. Hermiticity is only
sufficient to give real eigenvalues, CPT symmetry is necessary (see [11] and references
therein). Also, since an overall minus sign does not affect the causal domain of Feynman
contours, D(k, 4) is causal. Thus D(k, 4) is associated with 〈ΩL|T [φ(x)φ(0)]|ΩR〉, and
the 〈L|R〉 inner product is positive definite (see [11, 12] and the discussion below). We
cannot use (3) since the states are not normalizable. So now to the proof.

6. – PT symmetry or antilinear symmetry in general

Consider the eigenvector equation

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 = E|ψ(t)〉.(11)

Replace the parameter t by −t and then multiply by some general antilinear operator A:

i
∂

∂t
A|ψ(−t)〉 = AHA−1A|ψ(−t)〉 = E∗A|ψ(−t)〉.(12)

If H has an antilinear symmetry so that AHA−1 = H, then

HA|ψ(−t)〉 = E∗A|ψ(−t)〉.(13)
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There are two possibilities: 1) (Wigner): Energies can be real and have eigenfunctions
that obey A|ψ(−t)〉 = |ψ(t)〉, 2) or energies can appear in complex conjugate pairs that
have conjugate eigenfunctions (|ψ(t)〉 ∼ exp(−iEt) and A|ψ(−t)〉 ∼ exp(−iE∗t)). Thus
with realization 1) we obtain real eigenvalues with antilinear symmetry.

As to the converse, suppose we are given that the energy eigenvalues are real or appear
in complex conjugate pairs. In such a case not only would E be an eigenvalue but E∗

would be too. Hence, we can set HA|ψ(−t)〉 = E∗A|ψ(−t)〉 in (12), and obtain

(AHA−1 −H)A|ψ(−t)〉 = 0.(14)

Then if the eigenstates of H are complete, (14) must hold for every eigenstate, to yield
AHA−1 = H as an operator identity, with H thus having an antilinear symmetry. Anti-
linear symmetry is thus necessary for the reality of eigenvalues while Hermiticity is only
sufficient.

For inner products we note that the Dirac inner product 〈R(t)|eiH†te−iHt|R(t)〉 is only
time independent if H = H†. However, the left-right inner product 〈L(t)|eiHte−iHt|R(t)〉
is always time independent regardless of whether or not H = H†. This left-right inner
product is also equal to the overlap of a ket with its antilinear symmetry conjugate (see,
e.g., [11, 12]). And in fact on very general grounds it has been shown [11] that under
only two requirements, namely invariance under the complex Lorentz group (the proper
Lorentz group) and probability conservation the quantum Hamiltonian must be CPT
symmetric, being so without having any need to be Hermitian. Since CPT defaults to
PT for non-relativistic quantum systems this puts the PT symmetry program on a very
secure theoretical basis. In the following then we shall look for a connection between
higher-derivative gravity and the PT program. So we start with the Pais-Uhlenbeck
Oscillator model.

7. – Quantizing the Pais-Uhlenbeck Oscillator Model

Since only time derivatives are relevant to quantization, we set ω1 = (k̄2 + M2
1 )

1/2,
ω2 = (k̄2 +M2

2 )
1/2 and drop the spatial dependence. With z replacing φ the IS action

given in (5) reduces to the Pais-Uhlenbeck (PU) action

IPU =
1

2

∫
dt[z̈2 − (ω2

1 + ω2
2)ż

2 + ω2
1ω

2
2z

2].(15)

This is a constrained action since with only z, ż and z̈, there are too many canonical
variables for one oscillator but not enough for two. So we set x = ż, and using the method
of Ostrogradski [13], using Dirac Constraints [14], or a variation of a covariantized form
of the action with respect to the metric, one obtains the two-oscillator PU Hamiltonian

HPU =
1

2
p2x + pzx+

1

2

(
ω2
1 + ω2

2

)
x2 − 1

2
ω2
1ω

2
2z

2, [z, pz] = i, [x, px] = i.(16)

Now there are no ghosts, but one now has to pay a different price: the − 1
2ω

2
1ω

2
2z

2 term
in HPU leads to an energy spectrum that is unbounded from below, the Ostrogradski [13]
instability that is characteristic of higher-derivative theories.
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8. – Trading the energy instability for ghosts

Work by Lee [15], Källén and Pauli [16] and Heisenberg [17] reopened the ghost
issue, and it was found that one could avoid negative energies in the PU theory if one
quantized the PU theory with negative norm states. Specifically, if we make the standard
substitutions

z = a1 + a†1 + a2 + a†2, pz = iω1ω
2
2(a1 − a†1) + iω2

1ω2(a2 − a†2),

x = −iω1(a1 − a†1)− iω2(a2 − a†2), px = −ω2
1(a1 + a†1)− ω2

2(a2 + a†2),(17)

we obtain a Hamiltonian and commutator algebra [14]

HPU = 2(ω2
1 − ω2

2)(ω
2
1a

†
1a1 − ω2

2a
†
2a2) +

1

2
(ω1 + ω2),

[a1, a
†
1] =

1

2ω1(ω2
1 − ω2

2)
, [a2, a

†
2] = − 1

2ω2(ω2
1 − ω2

2)
,(18)

and note that with ω1 > ω2 the [a2, a
†
2] commutator is negative.

Also, we note that the ω1 = ω2 limit is singular, an issue we will return to below.
However, we note now that we cannot write the ω1 = ω2 propagator (i.e., M2

1 = M2
2 ) as

(19)
1

(k2 + iε)2
= lim

M2
1→0,M2

2→0

1

(M2
1 −M2

2 )

(
1

k2 −M2
1 + iε

− 1

k2 −M2
2 + iε

)
,

since the M2
1 → 0, M2

2 → 0 limit is singular. However, we could write the propagator as

(20)
1

(k2 + iε)2
= lim

M2→0

d

dM2

(
1

k2 +M2 + iε

)
,

a non-singular limit in which no negative sign appears. With this form we can anticipate
that the pure fourth-order theory is unitary, just as was in fact proven in [8,9]. We return
to this point below.

There are two realizations of (18). If we define the vacuum according to

a1|Ω〉 = 0, a2|Ω〉 = 0,

the energy spectrum is bounded from below, with |Ω〉 being the ground state with energy

(ω1+ω2)/2. But the excited state a†2|Ω〉, which lies at energy ω2 above the ground state,

has a Dirac norm 〈Ω|a2a†2|Ω〉 that is negative. On the other hand if we define the vacuum
according to

a1|Ω〉 = 0, a†2|Ω〉 = 0,

the PU theory is now free of negative-norm states, but the energy spectrum is unbounded
from below. (Negative energy states propagating forward in time.) However, for either
realization all the eigenvalues ofHPU are real. This will be of importance in the following.

Thus the PU theory suffers from one of two twin diseases, either negative norms
or negative energies. Since defining the vacuum by setting a2|Ω〉 = 0 or by setting
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a†2|Ω〉 = 0 would correspond to working in two totally different Hilbert spaces, in no
single Hilbert space does one have both diseases, though in either one there is still a
seemingly irrefutable problem. The objective of this paper is not to find a way to cancel
ghost states in the a2|Ω〉 = 0 realization in which there are no negative energies, but to
show that the reasoning that leads one to think that there is a ghost is faulty. Thus we
do not get rid of the ghosts but instead [8, 9] show that they were never there to begin
with. That this could in principle be possible is because a propagator such as D(k, 4) is
a c-number, and from a c-number one cannot construct the underlying q-number Hilbert
space. One can construct c-number matrix elements from q-number operators but not
the other way round. Thus we need to find the relevant Hilbert space and need to find
a relevant positive definite inner product that would replace the standard Dirac norm.

9. – PT Symmetry to the rescue —the Lee model

In 1954 Lee introduced a model in which one could do coupling constant renormal-
ization analytically. However, the model had ghost states of negative norm and Lee,
Källén and Pauli, and Heisenberg worked very hard on the issue. However, the problem
remained unsolved until the work of Bender, Brandt, Chen and Wang [18] no less than
some fifty years later. In the Lee model ghost states only appear for a certain range of
values of the renormalized coupling constant of the model, and in that range the bare
coupling constant is complex. In consequence, in that range the theory is not a Hermitian
theory, and one cannot use as norm or inner product the overlap of a ket state with its
Hermitian conjugate bra. However, in [18] it was found that the theory has an antilinear
PT symmetry, and when one uses the PT theory norm, viz. the overlap of a ket with
its PT conjugate, one finds that this norm is positive definite. Solving the Lee model
ghost problem this way is a considerable triumph for PT theory. Thus in general if one
finds states of negative Dirac norm, it does not necessarily mean that the theory is not
unitary. It could mean that one is in the wrong Hilbert space and that one is using the
wrong inner product (the Dirac one), with a different one (the PT one) being unitary.

10. – Implications for the Pauli-Villars propagator and the PU oscillator

On returning to the PU Hamiltonian given in (16) we note that unlike the Lee model
there is no complex coupling constant that could save us. However, if we set pz = −i∂z,
px = −i∂x, the Schrödinger equation takes the form

[
−1

2

∂2

∂x2
− ix

∂

∂z
+

1

2
(ω2

1 + ω2
2)x

2 − 1

2
ω2
1ω

2
2z

2

]
ψn(z, x) = Enψn(z, x),(21)

with the lowest positive energy state with E0 = (ω1 + ω2)/2 having eigenfunction [8]

ψ0(z, x) = exp

[
1

2
(ω1 + ω2)ω1ω2z

2 + iω1ω2zx− 1

2
(ω1 + ω2)x

2

]
.(22)

The state ψ0(z, x) diverges as z → ∞ and is thus not normalizable. Consequently, the
norm of the ground state

〈Ω|Ω〉 =
∫

dzdx〈Ω|z, x〉〈z, x|Ω〉 =
∫

dzdxψ∗
0(z, x)ψ0(z, x)
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is infinite too. Such lack of normalizability means that the closure relation given in (3)
could not hold as it presupposes normalizable states. However, rather than being a bad
thing, it is the lack of normalizability that actually saves the theory.

Specifically, to make the wave function ψ0(z, x) normalizable we must continue z into
the complex plane. If we draw a letter X in the complex z plane, the wave function
will be normalizable in a wedge (a so-called Stokes wedge —actually a generic feature
of PT theories [10]) that contains the north and south quadrants of the letter X, i.e.,
that contains the imaginary z-axis but not the real z-axis (which is in the east and west
quadrants). To implement this, with px = p we make the similarity transformations [8]

y = eπpzz/2ze−πpzz/2 = −iz, q = eπpzz/2pze
−πpzz/2 = ipz, [y, q] = i, [x, p] = i,(23)

eπpzz/2HPUe
−πpzz/2 = H̄ =

p2

2
− iqx+

1

2

(
ω2
1 + ω2

2

)
x2 +

1

2
ω2
1ω

2
2y

2.(24)

With its factor of i the Hamiltonian H̄ is now manifestly not Hermitian, but all of its
eigenvalues are still real since they cannot change under a similarity transformation. H̄
thus falls into the class of non-Hermitian Hamiltonians that have a PT symmetry (x and y
are PT odd and p and q are PT even) and have all energy eigenvalues real. Moreover, with
− 1

2ω
2
1ω

2
2z

2 being replaced by + 1
2ω

2
1ω

2
2y

2 there no longer is any Ostrogradski instability.
Thus all that remains is to deal with the ghosts.

However, first we must ask how z could not possibly be Hermitian. It certainly is
Hermitian when acting on its own eigenstates. However, that does not make it Hermitian
when acting on the eigenstates of the Hamiltonian, with it instead being y = −iz that
is. This is the secret of PT theory. With z not being Hermitian, then despite the dagger
notation we cannot identify a†2 in (17) as being the Hermitian conjugate of a2. In fact

we could have anticipated that this must be the case since otherwise 〈Ω|a2a†2|Ω〉 would
automatically have been positive rather than of the negative value we found for it above.

To make it manifest that all the eigenstates have positive norm we make the additional
similarity transformation with a Hermitian operator Q [8]

e−Q/2H̄eQ/2 = H̄ ′ =
p2

2
+

q2

2ω2
1

+
1

2
ω2
1x

2 +
1

2
ω2
1ω

2
2y

2,

Q = αpq + αω2
1ω

2
2xy = Q†, α =

1

ω1ω2
log

(
ω1 + ω2

ω1 − ω2

)
.(25)

We recognize H̄ ′ as being a fully acceptable standard, positive norm two-dimensional
oscillator system. In addition we note that with its phase being −Q/2 rather than
−iQ/2, the e−Q/2 operator is not unitary. The transformation from H̄ to H̄ ′ is thus not
a unitary transformation, but is a transformation from a skew basis with eigenvectors
|n〉 to an orthogonal basis with eigenvectors

|n′〉 = e−Q/2|n〉, 〈n′| = 〈n|e−Q/2.
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Then since 〈n′|m′〉 = δmn, the eigenstates of H̄ obey

〈n|e−Q|m〉 = δmn,
∑
n

|n〉〈n|e−Q = I,

H̄ =
∑
n

|n〉En〈n|e−Q, H̄|n〉 = En|n〉, 〈n|e−QH̄ = 〈n|e−QEn.(26)

We thus recognize the inner product as being not 〈n|m〉 but 〈n|e−Q|m〉, with the con-
jugate of |n〉 being the left-eigenvector 〈n|e−Q. This state is also the PT conjugate of
|n〉, so that the inner product is the overlap of a state with its PT conjugate rather
than that with its Hermitian conjugate, just as we had noted earlier. And as such this
inner product is positive definite since 〈n′|m′〉 = δmn is. The PU oscillator theory and
accordingly the Pauli-Villars propagator theory are thus fully viable unitary theories.

Finally, we note that when ω1 = ω2 the Q operator becomes undefined.

11. – But where did the minus sign in the propagator go?

The D(k, 4) propagator given in (7) has a relative minus sign, so where is it if all
norms are positive? The answer is that one should not identify the c-number D(k, 4)
with the matrix element 〈Ω|T [φ(x)φ(0)]|Ω〉, but instead with the matrix element

D(k, 4) =

∫
d4xeik·x〈Ω|e−QT [φ(x)φ(0)]|Ω〉.(27)

Now one can insert
∑

|n〉〈n|e−Q = I into 〈Ω|e−QT [φ(x)φ(0)]|Ω〉 and generate D(k, 4)
with it being the introduction of e−Q that generates the minus sign [9] and not the
presence of negative norm states. The error was thus in associating 〈Ω|T [φ(x)φ(0)]|Ω〉
with D(k, 4) without first having constructed the Hilbert space. Thus we do not actually
get rid of the ghost, we show that it was not there in the first place, with the reasoning
that led one to think that there is a ghost being faulty. Consequently, fourth-order
derivative quantum gravity theories are not only unitary, they always have been.

12. – Pure fourth-order quantum gravity

While we have established the unitarity of the second-order plus fourth-order theory
associated with the generic IS given in (5), from this we cannot immediately conclude by
taking the limit that pure fourth-order theories such as conformal gravity with its 1/k4

propagator are unitary too since the limit is singular. Specifically, with IS of (5) reducing
to the pure fourth-order IS = 1

2

∫
d4x∂μ∂νφ∂

μ∂νφ when M2
1 = M2

2 = 0, in this same
limit the decomposition of D(k, 4) into partial fractions given in (7) becomes unviable.
Since we set ω1 = (k̄2+M2

1 )
1/2, ω2 = (k̄2+M2

2 )
1/2, in this limit ω1 and ω2 become equal,

with both the commutation algebra given in (18) and the Q operator given in (25) then
becoming singular. The pure fourth-order theory thus has to be analyzed independently.

Then, as noted in [9], with Q being singular in the equal frequency limit the H̄
Hamiltonian given in (24) cannot be diagonalized. The equal frequency H̄, and conse-
quently its field theory generalizations, becomes a Jordan-block Hamiltonian that cannot
be diagonalized because it does not have a complete set of energy eigenstates.
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13. – In the Jordan-block limit where did the other eigenvector go?

To see what happens to the eigenstates in the one-particle sector, we set ω1 = ω + ε,
ω2 = ω − ε. In the limit ε → 0 we obtain

eiω1t → eiωt, eiω2t → eiωt.(28)

Thus both wave functions collapse onto the same wave function, and so we lose an
eigenstate. Now consider a different combination, viz.,

eiω1t − eiω2t

2ε
→ iteiωt.(29)

This second combination has a well-defined, non-singular limit, and in the limit becomes
non-stationary. So it is no longer an energy eigenstate. Since the two one-particle states
were orthogonal to each other before we took the limit, and since they become the same
eigenvector in the limit, in the limit the surviving eigenvector is both parallel to and
orthogonal to itself. It is thus has zero norm. Thus unlike the unequal frequency limit
were all (PT ) norms are positive, in the limit the norms become zero. However the
non-stationary states still stay in the Hilbert space, and the set of stationary plus non-
stationary states combined is complete, so the theory is still unitary with probability still
being conserved [9]. Because the eigenstates do have a non-standard but fully acceptable
zero norm, terms in the probability that grow linearly in t are multiplied by zero coeffi-
cients, so that probabilities are indeed time independent. This then is how probability
conservation is maintained in the Jordan-block case, with it being completeness of the
Hilbert space vectors and not completeness of the energy eigenstates that is key.

These remarks carry over to the pure fourth-order conformal gravity theory. Thus
it is a fully viable, probability conserving, non-diagonalizable, PT and CPT symmetric
theory (gμν is C even). The graviton has zero norm and is thus not an observable on-shell
state. There is still gravitational radiation since in any covariant gravitational theory
information is communicated with finite velocity (by off-shell gravitons).

14. – Conclusions

The PT option for quantum theory is now well established. It in no way changes
quantum mechanics. It simply takes advantage of an option that was there from the
beginning but had been overlooked. PT symmetry is quite ubiquitous in physics, and
cannot be avoided or ignored, especially when the standard SU(3)×SU(2)×U(1) model
is coupled to gravity. To establish PT or CPT symmetry only requires complex Lorentz
invariance and probability conservation. And if the theory of quantum gravity turns out
to be conformal gravity, then one of the four fundamental forces in nature would be a
non-Hermitian but PT symmetric theory.
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