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Nonlocal vertices, UV “opaqueness” and causality
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Summary. — Nonlocal field theories have seen a revival of interest in recent years.
Such theories possess nonlocal vertices characterized by some nonlocality length
scale �. This amounts to loss of resolution for scales finer than �. There are many
physical arguments for expecting such resolution loss for � of the order of Planck
length. The wavelet decomposition of fields, which analyses field configurations in
terms of successive resolution scales, is a natural framework for addressing this as
outlined here. Some recent results on unitarity and causality in the presence of
nonlocal vertices are also briefly mentioned.

1. – Introduction

After an initial period of exploration in the forties and fifties, there has been renewed
interest in recent years in investigating nonlocal field theories. In these theories the point
vertices of local field theory are replaced by nonlocal vertices. There are several physical
reasons for this interest. Such nonlocal vertices introduce a universal nonlocality length
scale � and, provided they satisfy certain properties, can solve the UV problem. The
prime example where this is realized are the Feynman rules of string field theory (SFT),
where the vertices are nonlocal. Due to the great complexity of the SFT Feynman rules,
such vertices are more conveniently studied in model field theories of, say, scalar fields
with nonlocal vertices of similar type [1-3].

Nonlocal vertices smear interactions over the scale �. This amounts to loss of resolu-
tion inside regions of size ∼ �d, since the interior of such regions cannot be adequately
resolved by the nonlocal vertices. This is a prime feature of nonlocal vertices character-
ized by some fundamental scale � and is present regardless of the manner in which the
vertices were obtained in any particular model. It implies that the occurrence of nonlocal
vertices can be viewed in a rather wider context. There is indeed an extensive body of
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work [4] spanning decades that shows that, in the presence of gravity, there is a limit to
the resolution any localization experiment can achieve. Indeed, since both the probing
and probed particles cary energy and, hence, gravitate, when it comes to energies for
localization within a scale of the order of the Planck length local gravitational collapse
and horizon formation must occur preventing finer resolution. This “UV opaqueness” is
necessarily present due to the universal nature of the gravitational coupling. Here we
outline a formalism suitable for describing such excision of regions of certain size in space.
The framework of wavelet decompositions would appear to be the natural framework for
this task. A very brief listing of some recent general results on unitarity and causality in
the presence nonlocal vertices is presented at the conclusion.

2. – Field wavelet decompositions

We fix some UV length scale �, which here may be naturally taken to be of the order
of Planck length or some unification scale. With �̂ denoting this scale in dimensionless
units(1) we set

(1) �̂ = 2−l̂

with integer l̂.
A wavelet decomposition is implemented through the construction of a Multi-

Resolution Analysis (MRA), which decomposes a function space H into a sequence of
orthogonal spaces of increasingly finer resolution,

H = Vl̂ ⊕Wm ⊕Wm+1 ⊕Wm+2 ⊕ · · ·
= Vl̂

⊕
m≥l̂

Wm .(2)

The starting space is the “scaling space”, denoted Vl̂, which we take here to refer to the

scale �, whereas the spaces Wm refer to scales m ≥ l̂ of progressively finer resolutions. A
basis set for this decomposition is constructed by translations and dilations from a scaling
mother function σ(x) and a set of 2d−1 mother wavelet functions υq(x) on R

d, i.e., given
a mother scaling function σ(x) and corresponding 2d − 1 mother wavelet functions υq(x)
on R

d, the basis set is given by

σl̂n(x) = 2dl̂/2σ(2l̂x− bn),(3)

υq
mn(x) = 2dm/2υq(2mx− bn) .(4)

with

(5) x ∈ R
d, n ∈ Z

d, l̂ ≤ m ∈ Z, 1 ≤ q ≤ 2d − 1, 0 < b ∈ R
+.

Here b is the translation parameter, which, as customary, in the following we set equal
to unity. The scaling set σl̂n(x) constitutes a basis in Vl̂, whereas, for each m, the set

(1) Expressing � in powers of 2 is the standard practice in wavelet theory. We could, of course,

by choice of units, set � = 1, l̂ = 0, but it is preferable to keep explicit reference to this UV
scale.
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υq
mn(x) constitutes a basis for the m-th resolution space Wm. The spaces are mutually

orthogonal and one has the orthogonality relations∫
ddxσl̂n(x)σl̂k(x) = δnk,(6) ∫
ddxσl̂n(x)υ

q
mk(x) = 0, m ≥ l̂,(7) ∫

υq
mn(x)υ

q′

m′k(x) = δmm′δnkδqq′ .(8)

The mother functions σ(x) and υ(x) are generally well localized around the origin within
a length of order �; they may, in particular, be of compact support. Physical requirements
dictate that the FT σ̂(k) be of sufficiently rapid decay along the Euclidean momentum
axis and an entire function on C

d.
A field configuration φ(x) on R

d has then the wavelet expansion

(9) φ(x) =
∑
n

φnσl̂n(x) +
∑
q,m,n

φq
mnυ

q
mn(x)

with coefficients φn = 〈σl̂n, φ〉, φq
mn = 〈υq

mn, φ〉 and summations over n,m, q as defined
in (5).

Equation (9) is a decomposition in successively finer resolutions.
∑

n φnσl̂n(x), the
scaling part of the field, represents the “coarse” part of the field, which represents all
features of φ down to scale �. The wavelet parts probe inside such regions with succes-
sively finer resolution: the υq

mn wavelet terms probe scales of order �m, m ≥ 1. It is a
remarkable, and very nontrivial, fact that this separation of scales is accomplished in an
orthogonal exact decomposition. The demonstration that this possible [5] in the eighties
led to the explosive development of wavelet theory and applications [5, 6].

Being orthonormal and complete, the basis (3), (4) furnishes a complete resolution of
the identity and the coefficients set {φn, φ

q
mn} provide an equivalent (discrete) complete

representation of the φ(x): in the functional integral integration over the field φ can
be replaced by integration over the infinite set {φn, φ

q
mn} as the dynamical degrees of

freedom. For our purposes here, however, it will be often more convenient to revert to use
of φ(x) as the dynamical variable. The connection is simply provided by the projection
operators onto the subspaces Vl̂ and Wm of the decomposition (9) given by

(10) Pl̂(x, y) =
∑
n

σl̂n(x)σl̂n(y), Qm(x, y) =
∑
q,n

υq
mn(x)υ

q
mn(y).

In terms of these (9) assumes the form

(11) φ(x) =

∫
ddyPl̂(x, y)φ(y) +

∑
m

∫
ddyQm(x, y)φ(y) ≡ (Pl̂ φ)(x) +

∑
m

(Qmφ)(x).

Introducing the projectionQl̂ (x, y) to the direct sum of allWm subspaces, i.e., Ql̂ (x, y) ≡∑
m≥l̂ Qm(x, y), one has

(12) Pl̂ +Ql̂ = 1.
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By (6)–(8), one indeed has (P 2
l̂
)(x, y) = Pl̂(x, y), (Q2

l̂
)(x, y) = Ql̂(x, y), and

(Pl̂Ql̂)(x, y) = 0. The projections Pl̂ and Ql̂ = 1 − Pl̂ thus decompose the field con-
figuration space S into two orthogonal subspaces: the subspace Vl̂ of fields representing
features down to scale �; and the subspace Wl̂ =

⊕
m≥l̂ Wm of fields that can represent

features from � down to arbitrarily small length scales. Thus, from (11)

(13) φ(x) = (Pl̂ φ)(x) + (Ql̂ φ)(x).

3. – Field theoretic models with limited UV resolution

3
.
1. Basic model . – As seen above wavelet decompositions allow one to selectively

pick out parts of a field configuration pertaining to a limited range of resolution. Define
a field ϕ(x) that contains only scaling parts: ϕ(x) =

∑
n ϕnσl̂n(x) with Euclidean action

(14) S =

∫
ddx

(
1

2
ϕKϕ+ LI(ϕ)

)
,

where LI is some local (polynosmial) interaction Lagrangian and

(15) K(∂) = (−Δ+m2)

with Δ = δμν∂μ∂ν . This implements the idea that regions of length scale � become
“opaque” and cannot be probed by interactions so as to achieve finer resolution. Quan-
tization is performed via the Euclidean path integral

(16) Z[J ] =

∫
[Dϕ] exp

{
−

∫ (
1

2
ϕKϕ+ LI(ϕ) + Jϕ

)}
.

In (16) the measure is defined by: [Dϕ] ≡
∏

n dϕn, since {ϕn} are the independent
degrees of freedom of the field ϕ, with the action expressed in terms of {ϕn}; e.g., for
the ϕ kinetic term in (14)

(17)
1

2
ϕKϕ =

1

2

∑
n,n′

ϕnKnn′ϕn′ , Knn′ = 〈σl̂n,Kσl̂n′〉,

and similarly for the other terms in the action. As already noted, it is generally more
convenient, however, to work with a field φ(x) containing all scales. This is done via
the projection operators Pl̂ , Ql̂ . Define a field χ(x) =

∑
q,m,n χ

q
mnυ

q
mn(x) containing

only wavelet parts. ϕ and χ are independent, indeed orthogonal fields. We next include
in (16) also integration over the fields χ ∈ Wl̂ defined by [Dχ] ≡

∏
q,m,n dχ

q
mn. This has

no effect since the fields χ do not appear in the action and are thus decoupled. We may
now define a field φ by adding ϕ and χ,

(18) φ = ϕ+ χ, Pl̂φ = ϕ, Ql̂φ = χ,

which contains components at all length scales. Note that, with the inclusion of inte-
grating over the decoupled χ fields in (16), the integration measure can be expressed in
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terms of the usual formal φ-measure,

[Dϕ][Dχ] = [Dφ] =
∏
x

dφ(x);

whereas the action (14), expressed in terms of φ, becomes

S =

∫
ddx

(
1

2
φP †

l̂
KPl̂ φ+ LI(Pl̂ φ)

)
,(19) ∫

ddx

(
1

2
φKφ− φKQl̂ φ+

1

2
φQ†

l̂
KQl̂ φ+ LI(Pl̂ φ) + JPl̂ φ

)
,(20)

where in the second equality we used the fact that ϕ = Pl̂ φ = φ − χ = φ − Ql̂ φ. If
we now treat the first term in (20) as defining the bare propagator K−1 and all other
terms as interactions, it is not hard to see that all contributions from the new 2-point
interactions thus generated, i.e., KQl̂ and Q†

l̂
KQl̂ , cancel, cf. [7]. The resulting effective

rules for the action (20) are thus the same as the Feynman rules as for the action,

(21) S =

∫
ddx

(
1

2
φKφ+ LI(Pl̂ φ)

)
+ JPl̂ φ.

This has the ordinary propagator Δ(k) = K−1(k) = 1
k2+m2 for a scalar field φ(x) but

nonlocal vertices arising from the presence of the projections Pl̂ in them. These vertices
are given by entire functions [7]. Thus (21) has the standard form of the actions studied
as models of nonlocal Feyman rules of nonlocal field and String field theories [1, 2].

Now, for explicit calculations, one needs the explicit form of the mother scaling func-
tion σ(x) such that the set {σl̂n(x)} constructed by translations and dilations form a
complete orthonormal basis for the scaling space Vl̂, cf. (3), in spacetime dimension d.
To form a complete MRA one also needs the 2d − 1 mother wavelet functions υq(x) on

R
d such that the complete wavelet set {υq

mn(x)} resolves scales ≤ l̂, i.e., the space Wl̂,
while maintaining the orthogonality relations (6)–(8). This is the hard part in obtaining
an explicit MRA directly in dimension d —in fact such constructions are known only for
d ≤ 3. In almost all wavelet work the mother scaling/wavelet functions are constructed
as the tensor product of one dimensional functions. This, however, is not suitable here
since the direct product picks a particular frame in d-dimensional Euclidean space and
thus manifest O(d) invariance is lost.

3
.
2. Generalized model . – In our case, however, this technical issue is easily evaded:

by construction the fields χ ∈ Wl̂, though used in intermedia steps for convenience,
do not appear in the final result, cf. (21). This is of course as it should be, since,
by the original physical reasoning, such regions are unresolvable. In other words, in
mathematical terms, we do not need a complete MRA. The orthogonal decomposition
of the field space S = Vl̂

⊕
Wl̂ , however, is guaranteed to exist [5, 6] even if we do

not have an explicit construction of the wavelet bases {υq
mn(x)} decomposing Wl̂ . Let

σ(x) = σ(|x|) be a radially symmetric normalized function on R
d and such that its FT

is entire. One may then again construct the set σl̂n(x) ≡ 2d l̂/2σ(2l̂x−n) by translations
and dilations. This set does not constitute an orthonormal set but such a set σ̃l̂n(x) may
be obtained by orthogonalization, specifically, symmetric (Löwdin) orthogonalization,
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which treats all elements of σl̂n(x) on an equal footing. Using the orthonormal σ̃l̂n(x)
one can construct projection operators Vl̂ as before, see (10), and proceed in an analogous
manner. The details are given in [7].

4. – Concluding remarks

Theories of the type presented here, cf. (21), are a subclass of the general class of
actions with ordinary physical propagators and nonlocal vertices. Assuming the vertices
are sufficiently convergent along the Euclidean axis and satisfy a number of other prop-
erties, such as possessing FT that are entire functions on C

d, such theories have good
properties: their analytically continued amplitudes onto the Minkowski axis are UV finite
and unitary [1, 2]. For vertices convergent also along the Minkowski directions one may
formally define the theory directly in Minkowski space. One may then ask whether the
resulting theory is equivalent to the one defined in Euclidean space. As demonstrated
in recent work [8], it is not. In particular, the resulting amplitudes are not unitary be-
yond tree level. This is because the infinite arcs in a Wick rotation make non-vanishing
contributions due to the entire function nature of the vertices. The correct prescription
for defining the theory is indeed to start in Euclidean space Rd and analytically continue
the external momenta to Minkowski space.

In the presence of nonlocal vertices causality is always a concern. Acausal effects
are indeed generally present. The physically relevant question is: how big can they be?
In discussing such effects in scattering experiments the appropriate use of wave packets
is crucial since particles can be experimentally detected only with limited resolution.
Realistically, the typical extent of the wave packets L can be assumed to satisfy L/� �
1 for nonlocality scale � of Planck scale order. A detailed analysis for arbitrary tree
diagrams in terms of deviations from the Bogoliubov Causality Condition is carried out
in [8]. The result is that for the most part acausal effects are exponentially suppressed,
though in cases where time-like vertex separations are involved the suppression can be
polynomial in (�/L).
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