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Summary. — We discuss problems of covariant renormalization of Lorentz non-
invariant, local and unitary Hořava gravity models in arbitrary spacetime dimen-
sions, including perturbatively renormalizable projectable Hořava gravity in (2 + 1)
and (3 + 1) dimensions. Renormalization group flow with asymptotically free UV
fixed point is presented in (2 + 1)-dimensional theory. A related model of gen-
eralized unimodular gravity (GUMG) is shown to have interesting applications in
cosmological inflation theory and within the cosmological dark energy problem. The
unification of these two models sharing in common Lorentz symmetry violation, fix-
ation of the lapse function and a number of other features is conjectured in the
framework of generalized renormalization group approach.

1. – Introduction

The quest for a renormalizable and perturbative quantum gravity theory consistent
in the UV domain shows that such a theory can indeed be constructed by introducing
higher-order curvature invariants [1-3], but it is doomed to violate unitary in view of ghost
modes associated with higher-order derivatives. In spite of various efforts to circumvent
this problem or justify the presence of ghosts by special rules of handling them [4, 5] or
within the scope of string theory, non-local field models [6, 7], etc., the most widespread
point of view is that the absence of ghosts should be a criterion for selecting a healthy
stable theory, and if this theory is also local, renormalizable, unitary and consistent in
the UV limit, then there is a hope that it can also describe our Nature.

Here we discuss the mechanism that can provide a combination of these proper-
ties, based on the breakthrough suggestion of [8] that this can be achieved by dropping
the requirement of Lorentz invariance and introducing in the field theory higher-order
derivatives only with respect to spatial coordinates. This suggestion turned out to be
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very productive and has led to a new notion of anisotropic scaling invariance and scaling
dimensions replacing the conventional physical dimensionality as a criterion of conver-
gence of Feynman diagrams. Application of this criterion within simple power counting
arguments led in [8] to the invention of the class of local, unitary quantum gravity models
which are considered to be perturbatively renormalizable and, therefore, expected to be
consistent in the UV domain. The first part of this paper will be devoted to the discussion
of subtle points of this statement, which present certain obstacles to the program of [8].
Namely, this is the problem of irregular propagators which might break the conventional
BPHZ scheme of subtracting UV divergences by local counterterms and the problem of
local gauge invariance of these counterterms, both of these issues especially inherent in
the Hořava gravity. What will be shown is that both problems can be successfully solved
for the class of projectable Hořava models, but still remain open for non-projectable
theories with the dynamical lapse metric variable.

The second part of the paper discusses the model of generalized unimodular gravity
(GUMG) which can, to a certain extent, be regarded as a twin of the projectable Hořava
gravity, because it shares a number of its properties and, moreover, bears fascinating
applications in cosmological inflation theory and in the dark energy problem. As we will
discuss in conclusions this tale of two models might be accomplished by their unification
within the effective field theory framework or the generalized renormalization group.

2. – Renormalizability of the Hořava gravity model

As is well known now [8], the idea of constructing a renormalizable unitary field theory
consists in the suggestion to increase the number of spatial derivatives of the fields in the
Lagrangian, but to retain only two of their time derivatives

∫
dt ddx

(
φ�φ+ ...

)
→

∫
dt ddx

(
φ̇2 − φ(−Δ)zφ+ ...

)
, z > 1.(1)

On the general power counting ground this provides a better convergence of Feynman
integrals and at the same time preserves unitarity, because in each physical mode the
propagator continues to have two poles with positive and negative frequencies. Then
renormalizability is achieved by choosing sufficiently high integer value of z, and selection
of the concrete Lagrangian is done by imposing the relevant global and local symmetry.
Obviously the mismatch between the number of spatial and temporal derivatives leads
to the loss of Lorentz invariance.

In case of gravity this means that the theory cannot retain full local diffeomorphism
invariance, and this local symmetry should be chosen to respect this higher derivative
structure in space vs. two derivatives in time. This symmetry can obviously be related
to the ADM split of the gravitational configuration space into spatial metric γij , lapse
N and shift N i functions,

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt) , i, j = 1, . . . , d,

where d is the dimensionality of space, which we consider to be rather general in
order to learn how the properties of the model depend on spacetime dimensionality
D = d + 1. Under this split the minimal truncation of the diffeomorphism invari-
ance looks like the so-called foliation preserving diffeomorphisms under which spatial
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coordinates undergo generic time-dependent transformations accompanied by space-
independent reparametrization of time,

xi �→ x′i(x, t) , t �→ t′(t).(2)

Lapse and shift functions transform as N �→ Ndt/dt′, N i �→ (N j∂x′i/∂xj −
∂x′i/∂t) dt/dt′, whereas the spatial metric γij behaves as a d-dimensional tensor along
with the extrinsic curvature tensor of the spatial slice of constant t

(3) Kij =
1

2N
(γ̇ij −∇iNj −∇jNi).

The lack of Lorentz symmetry can be compensated by the requirement of the new global
symmetry borrowed from condensed matter physics —the invariance under anisotropic
scaling transformations, which is very important as a selection criterion of viable renor-
malizable gravitational Lagrangians,

xi → λ−1xi, t → λ−zt, N i → λz−1N i, γij → γij ,(4)

[x] = −1, [t] = −z, [N i] = z − 1, [γij ] = 0, [Kij ] = z.(5)

Here the choice of the parameter z is motivated by the scaling invariance of the La-
grangian (1), and square brackets denote the scaling dimensions of relevant quantities
—the notion naturally replacing the notion of their physical dimensionality.

This construction immediately suggests the general structure of the class of gravita-
tional field models proposed in [8], which have by power counting arguments a chance of
being perturbatively renormalizable in (d+ 1)-dimensional spacetime, provided z = d,

(6) S =
1

2G

∫
dt ddx

√
γN

(
KijK

ij − λK2 − V
)
.

Here the kinetic term is quadratic in Kij , that is bilinear in time derivatives of the
metric, G is the gravitational coupling constant, λ is another dimensionless constant
of the kinetic term, and V is the potential term which can depend on the metric γij ,
its spatial derivatives and spatial gradients of lnN . For the sake of power counting
renormalizability this potential should have scaling dimensionality up to 2d implying the
presence of 2d derivatives. Below we will consider even simpler version of the Hořava
gravity —the so-called projectable version with frozen time reparametrization invariance
corresponding toN = 1. Then, say, in (3+1) dimensions relevant and marginally relevant
terms of its Lagrangian look as

V(γ) = 2Λ− ηR+ μ1R
2 + μ2RijR

ij + ν1R
3 + ν2RRijR

ij

+ν3R
i
jR

j
kR

k
i + ν4∇iR∇iR+ ν5∇iRjk∇iRjk,(7)

where Λ, η, μ1, μ2 are the relevant and ν1, ..., ν5 are the marginally relevant coupling
constants of the theory.

The prospects of this model turn out, however, to be more complicated than it
was originally anticipated in [8]. Even waving aside the difficulty of matching in the
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low-energy domain the dispersion relations with those of general relativity [9](1) (the
problem which we do not consider here because we restrict ourselves with only the high-
energy domain), the proof of renormalizability cannot really be accomplished by naive
power counting arguments. The point is that the degree of divergence of Feynman dia-
grams (denoted by D) does not a priori provide viable renormalizability criteria of the
BPHZ mechanism, because in the transition from Lorentz-invariant theories to Hořava
models it is now based on counting the anisotropic scaling dimension of their integrand
rather than the physical one,

(8) D
∫

dd+1p

(p2)N
= 1 + d− 2N → D

∫
dω ddk

(ω2 + k2z)N
= z + d− 2zN.

This is because this transition to the integrals over (d + 1)-dimensional loop momenta
p = (ω,k),

∫ L∏
l=1

dd+1k(l)Fn(k)
M∏

m=1

1(
P (m)(k)

)2 →

∫ L∏
l=1

dω(l)ddk(l) Fn(ω,k)

M∏
m=1

1

Am

(
Ω(m)(ω)

)2
+Bm

(
K(m)(k)

)2z ,(9)

results in propagators with some constant coefficients Am and Bm. It turns out that
the rules of BPHZ subtraction of UV divergences are guaranteed only when Am and Bm

are both positive [10]. Their values, however, depend on the choice of the model and,
moreover, on the choice of gauge conditions used in the Faddeev-Popov (or BRST) gauge
fixing procedure. Irregular 1/ω2 and 1/k2z terms in the propagators generically violate
the conventional renormalization procedure, so that a subtle step in the proof of renor-
malizability consists in the search for a special class of gauges in which all propagators
are regular —that is with Am, Bm > 0.

For the projectable Hořava gravity such a two-parameter family of gauges Fi has been
found in [10] in the form of the local gauge-fixing action with the nonlocal gauge-fixing
matrix Oij . Moreover, it was also extended to the class of background covariant gauges
in the form

Sgf =
σ

2G

∫
dt d2x

√
γ F i OijF

i, F i = Dtn
i +

1

2σ
O−1 ij(∇kh

k
j − λ∇jh),(10)

Oij =
[
− γij(−Δ)d−1 + ξ∇i(−Δ)d−2∇j

]−1
,(11)

where hij and ni are quantum fluctuations on top of background fields γij and N i,
Dtn

i = ∂tn
i − Nk ∂kn

i + ∂kN
i nk, σ and ξ are free gauge-fixing parameters, and all

covariant derivatives as well as raising and lowering the indices are done with respect to
the background metric γij .

(1) Dispersion relations for transverse-traceless tensor modes, ω2
tt = ηk2 + μ2k

4 + ν5k
6, and

the scalar mode, ω2
s = 1−λ

1−3λ

(
−ηk2 + (8μ1 + 3μ2)k

4 + (8ν4 + 3ν5)k
6
)
, show that in the unitarity

domain (1−λ)/(1−3λ) > 0 for any sign of η the theory has gradient instability for low momenta
k either in the tensor sector or the scalar one.
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2
.
1. BRST structure of renormalazation. – The BRST structure of the renormalization

in such gauges, which is supposed to lead to covariant counterterms and reduce to the
renormalization of the coupling constants in the original action (6)–(7), also requires
extension of known results for Lorentz-invariant theories to Hořava gravity. It turns
out that such an extension is possible [11] within a much wider class of theories with a
generic closed algebra of irreducible gauge generators which are linear in the quantum
fields ϕ. This extension runs via the inclusion into the conventional BRST operator the
background field and its BRST partner along with a special choice of the gauge fermion
Ψext depending on the full set of quantum fields Φ (including together with ϕ the BRST
ghosts and Lagrange multipliers) and their antifields Φ∗ playing the role of the sources
of the BRST transformations of the full set of quantum fields,

Q → Qext, Ψ → Ψext[Φ,Φ
∗ ].(12)

The sources J of the original gauge fields ϕ can also be included into the extended BRST
operator Qext,

e−W/� =

∫
DΦe−(S+QΨ+JΦ)/� =⇒ e−W/� =

∫
DΦe−(S+QextΨext)/�,(13)

and the generating functional W [ J, Φ∗] can be easily shown to satisfy Slavnov-Taylor
and Ward identities, the latter following from the background covariant nature of chosen
gauge conditions. Their application to the divergent part of the effective action via
the study of the cohomologies of the nilpotent BRST operator Ω yields such BRST
structure of the counterterms, that the overall renormalization reduces to a simultaneous
local renormalization of the gauge-invariant action of the original gauge fields ϕ and the
gauge fermion Ψext which also gets quantum corrections,

S[ϕ ] → S[ϕ ] + Δ∞S[ϕ ], Ψext[Φ,Φ
∗ ] → Ψ ext[Φ,Φ

∗ ] + Δ∞Ψ ext[Φ,Φ
∗ ].(14)

This BRST structure of renormalization, which is the sum of the renormalized classical
action and BRST exact term with the renormalized gauge fermion, is achieved via addi-
tional renormalization of quantum fields which turns out to be a (generically nonlinear)
anti-canonical transformation generated by the gauge fermion Ψext itself. It is important
that the uncontrollably complicated renormalization of the gauge fermion is immaterial
from the viewpoint of physical applications, because anyway the generating functional
of physical amplitudes is gauge independent onshell, δΨW | J=Φ∗=0 = 0. The remark-
able feature of this scheme is that it applies not only to perturbatively renormalizable
theories, but also to effective field theories below their cutoff [11]. All this justifies the
physically invariant scope of these results and their application, in particular, to Hořava
gravity models.

2
.
2. Asymptotic freedom in the (2 + 1)-dimensional Hořava gravity . – In this way

perturbative renormalizability and unitarity in UV domain was proven for projectable
Hořava gravity models in any spacetime dimension [10] and, moreover, their asymptotic
freedom is shown in (2 + 1)-dimensional case with the action

S =
1

2G

∫
dt d2x N

√
γ

(
KijK

ij − λK2 + μR2
)
.(15)
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Fig. 1. – RG flow of the couplings in the (2 + 1)-dimensional Hořava gravity. The arrows show
the direction of the flow towards the infrared.

Due to the fact that the one-loop effective action under the change of the gauge gets
shifted by the equation of motion term Γ1−loop → Γ1−loop +

∫
dt ddxΩij(δS/δγij), only

two coupling constants λ and G ≡ G/
√
μ among G, λ and μ are essential and gauge

independent. Their beta functions turn out to be [12]

βλ =
15− 14λ

64π

√
1− 2λ

1− λ
G, βG = − (16− 33λ+ 18λ2)

64π(1− λ)2

√
1− λ

1− 2λ
G2,(16)

and produce the RG flow shown in fig. 1, which has asymptotically free fixed point at
λ = 15/14 (another fixed point at the boundary λ = 1/2 of the unitarity domain, {λ <
1/2} ∪ {λ > 1}, is singular and requires two-loop calculation to resolve its singularity).

By the technique of universal functional traces [13] within the background field
method all beta functions of the projectable Hořava gravity (6)–(7) were recently com-
puted in the (3+1)-dimensional case, and several candidates for asymptotically free UV
fixed points have also been found [14].

Unfortunately, all the above conclusions have not yet been extended to non-
projectable Hořava models with a dynamical lapse N , because their propagators have in
any gauge-irregular terms, and sufficient renormalizability condition is not fulfilled. So
even the question of renormalizability in non-projectable models remains open.

3. – Generalized unimodular gravity

Now we turn to the model of generalized unimodular gravity (GUMG) [15,16] descend-
ing from maybe the first modification of general relativity (in 1919 due to Einstein [17])
—unimodular gravity (UMG) which is based on the metric restriction to a fixed (unit)
determinant det gμν = 1. This generalization consists in the constraint expressing the
lapse function as a rather generic function of the spatial metric determinant

(−g00)−1/2 = N(γ), γ = det γij ,(17)

UMG obviously being its particular case with N(γ) = 1/
√
γ. This model has interesting

applications in inflation theory and in dark energy problem and, though its quantum
properties are not yet studied to the same extent as in the Hořava gravity, the GUMG
theory shares with the latter a number of features which makes the tale of these two
models rather fascinating. What they share in common is violation of Lorentz and
diffeomorphism symmetry, fixing the lapse function (like in the projectable HL model),
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the same number of degrees of freedom (transverse-traceless tensor plus scalar gravitons),
etc.

The GUMG action descending from the Einstein action SE [ gμν ],

SGUMG[ gij , g0i ] = SE [ gμν ]
∣∣
(−g00)−1/2=N(γ)

,(18)

generates Einstein equations with effective stress tensor of perfect dark fluid whose energy
density ε and pressure p are composed of purely metric degrees of freedom and satisfy
the barotropic equation of state with a variable in time parameter w,

p = wε, w = 2
d lnN(γ)

d ln γ
.

This model can generate inflation driven by the scalar graviton, playing the role of
inflaton [18], and due to varying w might incorporate also a dark energy scenario [16].

3
.
1. Primordial power spectra in GUMG inflation. – The cosmological perturbation

theory for metric fluctuations, decomposed on the inflationary background with the scale
factor a into irreducible components, hij = a2(−2ψ σij + 2∇i∇jE + 2∇(iFj) + tij),
generates in an appropriate gauge the Mukhanov-Sasaki equation [19] for the inflaton
mode ϑ = θ ψ,

ϑ′′ − c2s Δϑ− θ′′

θ
ϑ = 0.(19)

Here primes denote derivatives with respect to conformal time η, and a nontrivial sound
speed cs and the function θ are determined by the time history of the background scale
factor a(η) and of the equation of state parameter w,

c2s =
w(1 + w)

Ω
, θ2 = 3a2M2

P

Ω

w
, Ω = 1 + w + 2

d lnw

d ln γ
.

A similar equation in the tensor sector holds with cs = 1 and θ = a. In the unitarity
domain, where the theory is free of ghosts and unitary,

w

Ω
> 0 1 + w > 0,

it generates inflationary power spectra of scalar and tensor perturbations typical for the
k-inflation models [19]. They read in terms of the energy density ε and the Hubble factor
H, ε = 3M2

PH
2, at the horizon crossing moment for the mode with a wave vector k,

δ2ψ(k, η) =
1

36π2

1

cs(1 + w)

ε

M4
P

∣∣∣∣
csk=Ha

, δ2t (k, η) =
2

π2

H2

M2
P

∣∣∣∣
k=Ha

.(20)

These primordial spectra will be slightly red tilted in accordance with the present day
phenomenology of inflation theory if the function N(γ) in the definition of the GUMG
action (18) is parameterized in terms of the spectral tilt 1− ns 	 0.04 
 1 as

N(γ) =
1
√
γ

[
1 +

√
γ

γ∗
+B

( γ

γ∗

)3/2−4(1−ns)/3 ]
, w 	 −1 +

√
γ

γ∗
,(21)
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with some constant B = O(1) and the spatial volume of the Universe
√
γ∗ = a3∗ at the end

of inflation. Quite remarkably this result satisfies the naturalness condition for the antici-
pated (but not yet measured) small tensor to scalar ratio r = δ2t /δ

2
ψ, because in this model

this ratio looks, in terms of the canonically assumed value of the inflation e-folding num-
ber N = 1

6 ln(γ∗/γ | csk=Ha) 	 60, as r ∼ 54(e−N )4(1−ns) ∼ 10−3 —phenomenological

exponentially big red shift number z = eN does not contradict moderately small value
of r.

3
.
2. GUMG theory as k-essence and self-gravitating media. – It turns out that the

k-inflation type of the spectra (20) is not accidental because the GUMG model can
be shown to be equivalent to a special type of k-essence models [19] or more generally
models of self-gravitating media [20]. This equivalence can be derived by first embedding
the GUMG model into diffeomorphism invariant theory of four scalar Stueckelberg fields,
three of those being able to decouple from the system, so that the remaining Stueckelberg
field φ with a nonlinear and translation non-invariant in the φ-space kinetic term becomes
a matter source in the covariant Einstein theory

(22) SK [ gμν , φ ] = SE [ gμν ] +

∫
d4x

√
−g K(φ)P (X), X ≡ gμν∇μφ∇νφ.

Under the appropriate choice of P (X) and K(φ) this action is equivalent to (18) in the
sense that it generates the same equations of motion in the coordinate gauge φ = x0 for
which X = g00 = −1/N2. The function P (X) is directly related to the function N(γ) in
the GUMG action (18)

P (X) =

(
−X

Γ (1/
√
−X)

)1/2

, Γ (N(γ)) ≡ γ,

in terms of Γ (N) —the function inverse to N(γ), whereas the construction of K(φ) is
more complicated and described in [20]. The perfect fluid of this k-essence has pressure,
density and the speed of sound [19]

(23) p = wε = K(φ)P (X), ε =
p

w
, c2s =

∂p/∂X

∂ε/∂X
,

the resulting c2s = w(1 + w)/Ω exactly matching with (20) in view of the relation
P (X(γ)) = 1/

√
γN(γ).

Reconstruction of K(φ) in the GUMG model of inflation with function (21) can be
done within perturbation theory in two small parameters

δ =

√
−∇μφ∇μφ

γ∗

 1, ε =

3H0φ√
γ∗

≡ φ

φ0
∼ a3

a3∗

 1,

the second one expressing smallness of the scale factor a during inflation compared to
its value a∗ at the end of inflation stage,

√
γ∗ = a3∗. H0 here is the Hubble factor at

the onset of inflation. Within this perturbation theory the Lagrangian of the k-essence
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scalar field takes the form
(24)

LK(φ,∇μφ∇μφ) =
3M2

PH
2
0√

γ∗

(√
−∇μφ∇μφ−√

γ∗
)
+O

(
ε, ε3+8ns−1

3 , δ2, δ3+8ns−1
3

)
,

where we disregard higher-order integer and fractional powers of these smallness param-
eters. The leading term here is the Lagrangian of the so-called cuscuton model [21] with
the nonlinear square-root kinetic term and the constant potential. With a special choice
of the potential cuscuton models generate dark energy mechanism similar to that of the
Dvali-Gabadadze-Porrati model [22]. They are also known for being not dynamical, be-
cause of ultralocal in time equation of motion, which is interpreted as infinite speed of
sound of the “propagating” excitations of φ.

On the contrary, the above ε and δ corrections are critically important in the GUMG
model to make its scalar mode dynamical and generate small red tilt ns − 1 	 −0.04 in
the primordial CMB spectrum. Smallness of this tilt actually allows one to expand these
corrections, which yields logarithms ln(φ/φ0) and ln(−X) resembling Coleman-Weinberg
potential and gradient expansion of quantum corrections. This suggests the hypothesis
that the GUMG theory might be the effective field theory of some fundamental quantum
model.

4. – Conclusions and discussion

Except for the final remark above we have not yet associated the projectable Hořava
gravity with the GUMG theory at the quantum level. Such an association is still pos-
sible in the form of the hypothesis that reduction of the foliation preserving diffeomor-
phisms in Hořava gravity to even narrower class of coordinate transformations —spatially
transverse diffeomorphisms— might still lead to the renormalizable theory with the ac-
tion (6)–(7) in which all couplings, except G, become functions of γ and the projectability
condition N = 1 is replaced by (17),

gA = (λ,Λ, η, μ1, μ2, ν1, ...) → gA(γ) =
(
λ(γ), Λ(γ), η(γ), μ1(γ), μ2(γ), ν1(γ), ...

)
,

N → N(γ).

These generalized couplings N(γ) and gA(γ) would perform infinite resummation of
marginally relevant invariants of the same anisotropic scaling dimensionality, and their
running in both the Wilsonian energy scale k∗ and the dimensionless variable γ will
be determined by RG equations with generalized beta functions βA(g, ∂γg, ∂

2
γg, ...) al-

gebraically depending not only on the set of g, but also on their first-order and higher
derivatives in γ,

k∗
∂gA
∂k∗

= βA(g, ∂γg, ∂
2
γg, ...).(25)

Such differential RG equations in partial derivatives were suggested for nonrenormal-
izable theories with infinite set of charges in [23], and perhaps in this Hořava gravity
context they might find viable applications. If this hypothesis materializes, then the
choice of the sequence of coefficient functions N(γ), λ(γ), ..., will be based not on purely
phenomenological ground, as the one suggested above from the viewpoint of the needs of
inflation theory, but from fundamental field theoretical arguments. In particular, they
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will follow from fixed points of these generalized RG flows, which will be given by the
solutions of a nontrivial set of ordinary differential equations βA(g, ∂γg, ∂

2
γg, ...) = 0.

This construction might eventually provide an alternative to the non-projectable Hořava
gravity, whose renormalizability still remains an open issue.

At the moment, however, too many conjectures are underlying the above picture
attempting to unify these two Hořava and GUMG models, in order we could further guess
on the viability of such a hypothesis. So, instead, we would just summarize the reliable
facts surveyed above. As was shown, perturbative renormalizability of the projectable
Hořava gravity in any spacetime dimension provides salvation of local, unitary quantum
gravity theory consistent in the UV domain. The regularity of its propagators guarantees
BPHZ renormalization and the choice of background covariant gauges provides local
gauge invariance of counterterms via the use of BRST extension of the theory and the
cohomological properties of its nilpotent BRST operator. Asymptotic freedom of the
(2+1)-dimensional projectable Hořava gravity in the UV limit was proven, and a similar
property has recently been found in the (3+1)-dimensional case [14]. As a possible twin
of the projectable Hořava gravity, the generalized unimodular gravity is shown to have
interesting applications in the phenomenology of cosmological inflation and k-essence
theories. These results show that violation of the Lorentz invariance which, however,
does not rule out its subsequent recovery via Stueckelberg-type covariantization, indeed,
it serves as a palladium of locality, unitarity and renormalizability in quantum gravity,
and further exciting revelations are expected on this road.
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