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Summary. — In this paper we discuss a limiting curvature condition and its
application to cosmological and black hole solutions.

1. – Introduction

Existence of singularities is a generic property of general relativity. For well-known
cosmological and black-hole solutions of Einstein equations these singularities are related
to infinite growth of curvature. One can either “live” with a situation when the space-
time terminates its existence at the singularity, or believe that this “decease” of general
relativity can be cured by proper modification of Einstein equations in the ultraviolet
domain. There exist a lot of publications where different modifications of general relativ-
ity were proposed. At the same time one may try to answer a “simpler question”: What
properties of cosmological and black-hole models might be in a theory which forbids the
curvature singularity formation.

In 1982 Markov proposed a so-called limiting curvature condition [1, 2]. According
to this conjecture the spacetime curvature should be always restricted by some universal
value

(1) |R| < Λ =
BR
�2

.

Here R is a scalar curvature invariant which has dimension of [length]−2 and Λ is its
limiting value. The parameter � connected with the radius of the curvature plays a role
of a fundamental length of the theory. The dimensionless parameter BR depends on a
choice of the curvature invariant R but it is universal in the following sense. It does not
depend on the parameters which enter solutions, such as black hole mass or the total
entropy of the universe.
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There are a lot of publications where nonsingular cosmological and black hole models
are discussed. In principle, there exist two kinds of approaches to this problem:

• one can try to guess the form of the metric which satisfies the limiting curvature
condition and which in the spacetime domain where the curvature is much smaller
than the critical one properly reproduces corresponding solutions of Einstein
equations;

• one can try to find such a modification of the Einstein equations which automati-
cally prevents infinite growth of the curvature.

In the present paper we discuss some aspects of these two approaches.

2. – Metrics satisfying the limiting curvature condition

Let us first describe an interesting class of metrics which satisfy the limiting curvature
condition. Let us consider the following metric:

ds2 = −f(r, v)dv2 + 2dvdr + r2dω2,(2a)

f(r, v) = 1− m2(v)

�2
F (x), x =

r

m(v)
.(2b)

Here m(v) and F (x) are two arbitrary functions and dω2 is a metric on a unit round 2D
sphere. The parameter � which enters this metric has the dimension of length. At the
moment it is arbitrary. Later � will be identified with the radius corresponding to the
limiting curvature. The mass function m controls the mass of the black hole and when
dm/dv �= 0 it is related to the energy density of the spherically symmetric null fluid flux,
which changes the black hole parameters. We shall demonstrate that for a proper choice
of structure function F (x) metric (2) describes a nonsingular spherically symmetric black
hole and its spacetime obeys the limiting curvature condition.

A well-known special case of (2) is Vaidya metric

(3) ds2V = −
(
1− 2M(v)

r

)
dv2 + 2dvdr + r2dω2.

It describes a black hole. Here M(v) is the mass of the black hole as a function of the
advanced time v. For constant M metric (3) coincides with the Schwarzschild metric. If
dM/dv �= 0 there exists a null fluid flux which changes the black-hole mass. Vaidya met-
ric (3) is often used to describe a formation and consequent evaporation of a black hole.
At the phase of formation dM/dv > 0, while during the evaporation phase dM/dv < 0.
It is easy to check that metric (3) can be presented in the form (2) with the following
choice of the mass function:

(4) m(v) = [2M(v)�2]1/3.

Our next step is calculation of the curvature invariants for metric (2). We use the
following notations:

C2 = CαβγδC
αβγδ, S2 = SαβS

αβ = RαβR
αβ − 1

4
R2,(5a)

K = RαβγδR
αβγδ = C2 + 2S2 +

1

6
R2.(5b)
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Here Sαβ = Rαβ− 1
4Rgαβ , and Rαβ and R are Ricci tensor and Ricci scalar, respectively.

Calculation of the scalar curvature invariants gives

C =
1√

3�2x2
(x2F ′′ − 2xF ′ + 2F ),(6a)

S =
1

2�2x2
(x2F ′′ − 2F ),(6b)

R =
1

�2x2
(x2F ′′ + 4xF ′ + 2F ),(6c)

K =
1

�4

[
(F ′′)2 +

4(F ′)2

x2
+

4F 2

x4

]
.(6d)

These relations demonstrate a remarkable property of the metric (2): the curvature
invariants written as functions of x do not depend on the mass function m(v). This
means that in order to keep these invariants uniformly and universally bounded it is
sufficient to chose a properly bounded function F (x).

Using expressions (6a)–(6c) one gets

(7) �2
(
2
√
3C − 6S +R

)
= 12

F (x)

x2
.

If the curvature invariants are finite at x = 0 then the function F (x) at this point should
have the following asymptotic form:

(8) F (x) = F0x
2 + . . . , F0 = const,

where dots denote terms of the higher order in x. Let us write F (x) in the form F (x) =
x2U(x), then

C =
1√
3�2

(x2U ′′ + 2xU ′),(9a)

S =
1

2�2
(x2U ′′ + 2xU ′),(9b)

R =
1

�2
(x2U ′′ + 8xU ′ + 12U).(9c)

If the function U(x) and its derivatives at x = 0 are finite then the scalar curvature
invariants are finite at this point. The metric function f at small r has the following
form:

(10) f = 1− U(0)
r2

�2
+ . . . .

We can use an ambiguity in the definition of the parameter � to absorb the factor U(0)
into it.

In order to have the asymptotically flat metric the function U(x) at large x should
have the following form: U(x) ∼ c/x3 + . . .. Then one has

(11) f ∼ 1− c m3

�2r
+ . . . .
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The constant c can be absorbed into a redefinition of the mass function m. Using this
ambiguity we choose c = 1. For this choice the function f at large distance asymptotically
takes the form (3) if

(12) m(v) = [2M(v)�2]1/3.

Let us summarize. Using the above discussed ambiguities one can impose the following
conditions on the function U(x):

(13) U(0) = 1, U(x → ∞) ∼ 1/x3.

Using this asymptotic form of U(x) at large x it is easy to show that the leading term of
the Einstein tensor Gμν calculated for the metric (2) at large r is

(14) Gμν ≈ 2Ṁ

r2
v,μv,ν .

If the following equation:

(15) x2U(x) =
�2

m2(v)
.

has a solution x = x(v) then the metric (2) has a trapped surface at x = x(v). Since the
function x2U(x) grows from 0 near x = 0 and decreases as 1/x at the infinity it has one
or more local maxima. We assume that there exists only one maximum at some point
x = x∗. If at this point

(16) x2
∗U(x∗) >

�2

m(v)
,

then eq. (15) has two solutions, x0 < x∗(v) and x1 > x∗(v). If the mass M is constant
and does not depend on advanced time v, the outer surface x = x1 is an event horizon
and x = x0 is the inner horizon. In a time-dependent case solutions of eq. (15) describe
positions of the inner and outer branches of the apparent horizon. When the mass M
decreases with time then at some time these branches can meet each other. This happens
when x0 = x1 = x∗(v). At this point the apparent horizon terminates. In such a situation
the information collected inside the apparent horizon can become visible to an external
observer. Technically, this means that the event horizon does not exist.

The simplest choice of function U(x) satisfying conditions (13) is

(17) U =
1

1 + x3
.

It is easy to check that the function f(r, v) is this case is

(18) f(r, v) = 1− 2M(v)r2

r3 + 2M(v)�2
,
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Fig. 1. – Function f for Hayward metric (17) (solid line) and its generalization (21) with n = 2
(dashed line). In both cases the mass M is constant and its value is chosen to be equal to 27/2
in the units where � = 1. A coordinate x along the horizontal axis is x = r/m = r/3.

and the corresponding metric (2) is nothing but a Vaidya-type generalization of the
Hayward metric [3]. Discussion of properties of this metric and its generalizations as
well as further references can be found in [4-7].

A solid line in fig. 1 shows a plot of function f for metric (2) with U given by (17).
For illustration we choose the mass M to be constant and put 2M = 27 and � = 1, so
that m = 3. This plot shows f as a function of x = r/m = r/3. The left plot in fig. 2
shows invariants C, S and R calculated for the same parameters M and �.

Metrics (2) with function U(x) satisfying conditions (13) is a far-going generalization
of the Hayward-Vaidya metric (18). Their common property is that their curvature
invariants do not depend on mass function. If U(x) and its derivatives are bounded on
the interval x ∈ [0,∞), and the following relations are valid:

(19) max
x∈[0,∞)

|U(x)| = U0, max
x∈[0,∞)

|xU ′(x)| = U1, max
x∈[0,∞)

|x2U ′′(x)| = U2 ,

where U0, U1 and U2 are finite constants, then the curvature invariants obey the limiting
curvature conditions

(20) C2 ≤ BC

�4
, S2 ≤ BS

�4
, |R| ≤ BR

�2
.

Dimensionless constants BC , BS and BR depend only on the choice of the function U(x).
There exists an infinite number of functions U(x) satisfying both conditions (13)

and (19). For example one can take

(21) U(x) =
1 + xn

1 + xn+3
,

where n is a positive integer number. Figure 1 shows by a dashed line the metric function
f for n = 2. The curvature invariants for this metric with n = 2 are shown in the right
plots in fig. 2.
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Fig. 2. – Plots for the curvature invariants for Hayward metric (17) (left) and its generaliza-
tion (21) (right). The parameters of these metrics are chosen the same as in fig. 1. Solid, dashed
and point lines are used for C, S and R invariants, respectively.

3. – Limiting curvature theory of gravity

Infinitely growing curvature in the black hole interior signals the formation of sin-
gularity. Metrics presented in the previous section are nonsingular and they obey the
limiting curvature condition. However, they are not solutions of some explicitly known
modified gravity equations. How to modify gravity equations in order to escape singular-
ities? Recently a new approach has been proposed which allows one to prevent infinite
growth of the spacetime curvature [8-10]. It was called a limiting curvature gravity (LCG)
theory. Its general idea is to incorporate inequality constraints restricting the growth of
the curvature into the gravity action.

Suppose we want not to allow some curvature invariant to be arbitrary large. Let
us denote this invariant by R and its limiting value by Λ. We introduce a constraint
function

(22) Φ = R− Λ.

Thus our goal is to include the following inequality constraint Φ ≤ 0 into our theory
of gravity. This can be done as follows. Let the original (unconstrained) action for the
gravitational field be

(23) Sg =

∫
dx

√
−gLg.

Lg is the function of the metric g and its derivatives. In the standard general relativity
Lg = 1

2κR, where R is a scalar curvature, and κ = 8πG. If there exist other fields beside
the gravitational one, then Sg depends on them as well.

We modify this action by adding a term which is responsible for imposed inequality
constraint

S = Sg + Sc,(24a)

Sc =

∫
dx

√
−g χ (Φ + ζ2).(24b)
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The extended action S besides the metric g contains two Lagrange multipliers, χ(x) and
ζ(x). Variation of S with respect to these functions gives

(25) Φ + ζ2 = 0, χζ = 0.

If Φ < 0, then the first equation gives ζ2 = −Φ, while the second equation implies that
χ = 0. In this regime, which is called subcritical, the gravitational equations are not
modified

(26)
δS

δgμν

∣∣∣∣
χ=0

=
δSg

δgμν
= 0.

When the curvature R reaches its critical value Λ, the function ζ vanishes. In this
so-called supercritical regime the second Lagrange multiplier, χ becomes non-zero. As a
result this function enters into the variation of the action S and modifies the gravitational
equations. They contain now χ and its derivatives. The number of the gravitational
equations remains the same, but they contain one more variable. However, the complete
set of equations contains now an additional constraint equation

(27) Φ = 0.

This extended system of equations is sufficient to determine both the metric g and the
function χ. Since a non-vanishing value of χ indicates that a system is in its supercritical
regime it is called a control function.

Suppose a transition between initial subcritical solution to the supercritical one hap-
pens at some junction surface Σ. One can use obtained system of equations and known
subcritical metric in order to find the initial conditions on Σ for the corresponding su-
percritical solution. It is sufficient to use the continuity conditions which follow from the
field equations.

The extended action S can be easily generalize to the case of several inequality con-
straints. For this purpose it is sufficient to substitute instead of χ (Φ+ζ2) in the integrand
in Sc a sum

(28)
∑
i

χi (Φi + ζ2i ).

Here Φi is a constraint function for the constraint number i, and χi and ζi are two
Lagrange multipliers accompanying this constraint.

4. – Two-dimensional black holes in LCG theory

To illustrate how the approach described in the previous section works let us consider
a 2D black hole LCG model [8]. We start with the action of a 2D dilaton gravity model
which is known to have black-hole solutions and is exactly solvable at the classical level

Sg =
1

2
s

∫
d2x |g|1/2 (ψ2R+ 4(∇φ)2 + 4λ2).(29)
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Here R is the curvature of the two-dimensional spacetime with metric gαβ and ψ is a
dilaton field. Parameter λ has the dimension [length]−2. This model naturally appears
in the framework of string theory and its properties have been extensively studied.

A limiting curvature model is obtained by adding to Sg an action

(30) Sc =
1

2

∫
d2x|g|1/2χ(Φ + ζ2), Φ = R− Λ.

Here Λ > 0 is a positive constant constraining the 2D curvature R. Without the Lagrange
multiplier ζ the action (30) looks exactly as that of Jackiw-Teitelboim gravity model.

Variation of the action S = Sg + Sc over ζ and χ gives the constraint equations (25),
while its variation over ψ and gαβ leads to the dilaton and gravitational field equations

�ψ −
(
λ2 +

1

4
(Λ− ζ2)

)
ψ = 0,(31a)

χ;αβ +
1

2
gαβRχ = Qαβ ,(31b)

Qαβ = 4ψ;αψ;β+
1

2
gαβ

[
−4ψ;εψ

;ε+(4λ2 +R)ψ2
]
.(31c)

In the subcritical domain these equations coincide with the standard equations of 2D
dilaton gravity and their solutions are well known. The solution of the field equations (31)
is

ds2 = −fdt2 + f−1dr2(32a)

f = 1− M

λ
e−2λr, ψ = eλr.(32b)

This metric describes a 2D black hole in an asymptotically flat spacetime. Its horizon is
located at rH = 1

2λ ln M
λ , and its spacetime curvature is

R = −∂2f

∂r2
= 4λM e−2λr.(33)

It takes value R = 4λ2 on the horizon. The Killing vector ξ = ∂t is time-like in the black
hole exterior, and it is space-like inside the black hole.

To cover a complete spacetime of the 2D black hole we introduce coordinates similar
to the standard Kruskal coordinates. For this purpose we introduce null coordinates

(34) U = −
√

λ

M
exp(−λu), V =

√
λ

M
exp(λv).

where

(35) u = t− r∗, v = t+ r∗, r∗ =

∫
dr

f
=

1

2λ
ln

(
exp(2λr)− M

λ

)
.

In these coordinates

(36) ds2 = − 1

λ2

dU dV

1− UV
, −∞ < U < ∞, −∞ < V < ∞, UV < 1.
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To construct the Carter-Penrose conformal diagram for the 2D metric we introduce
new null coordinates (p, q)

(37) U = tan p, V = tan q,
(
−π

2
< p <

π

2
,−π

2
< q <

π

2

)
.

In these coordinates the metric takes the form

(38) ds2 = − 1

λ2

dpdq

cos p cos q cos(p+ q)
.

Lines p+ q = ±π
2 correspond to spacelike curvature singularities.

At line r = rΛ = −(1/2λ) ln(Λ/(4λM)) the curvature R reaches its critical value. We
impose a condition Λ/(4λ2) > 1, so that rΛ < rH and the transition point is located in-
side the black hole. Beyond this point the supercritical regime starts. In this regime the
constraint equation takes the form R = Λ. The spacetime metric in this supercritical do-
main is locally a de Sitter one. Analysis of the dilaton and gravitational equations shows
that the control function χ does not vanish there. This means that after the solution
enters its supercritical phase from the subcritical one it remains in this phase forever.
A detailed discussion of gluing sub- and supercritical solutions and global structure of
the 2D black holes in the LCG theory can be found in [8]. Figure 3 from this paper
shows a conformal diagram for an eternal 2D black hole.

Similarly to the eternal 4D Schwarzschild black hole it has two domains R+ and R−
with asymptotically flat infinities. Regions T− and T+ describe interiors of black and
white holes, respectively. Instead of singularities these domains contain expanding and
contracting de Sitter-like cores. As usual, such an eternal spacetime solution can be
used to construct solutions for different physically interesting cases. For example, when
a black hole is formed in gravitational collapse of a body, a boundary of this body is
represented by a timelike curve on the diagram 3. A spacetime domain of the eternal
black hole located to the left from this line should be cut and substituted by the metric
inside the collapsing body. Let us summarize: In the LCG model of a 2D black hole its
interior contains expanding de Sitter core instead of the singulatity.

Fig. 3. – Conformal diagram for the spacetime of the solution of LCG theory which consists of
an “eternal” 2D black hole domain glued to the de Sitter spacetimes. Dashed lines represent
junction surfaces where the curvature reaches its maximal value R = Λ.
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5. – Four-dimensional spherically symmetric black holes in LCG theory

Study of the interior of four-dimensional black holes in LCG theory is much more
complicated [9]. One of the reasons is that the number of independent curvature invari-
ants for spherically symmetric metrics is 4 instead of one scalar curvature invariant in
2D case.

When the curvature invariants are smaller than their critical value, a solution is
subcritical and coincides with the Schwarzschild metric

(39) ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dω2.

We assume that a transition to the supercritical regime takes place inside the black hole
where the metric takes the form

(40) ds2 = −dr2

f
+ fdt2 + r2dω2, f =

2M

r
− 1.

In the black hole interior f > 0 and introducing a new coordinate τ

(41) τ =
√
r(2M − r) +M arcsin

(
M − r

r

)
+

1

2
πM,

one can write (40) in the form

ds2 = −dτ2 +B2dt2 + a2dω2,(42)

where a and B are functions of proper time τ

(43) B2 = f(r(τ)), a = r(τ).

If the transition from sub- to supercritical regime takes place at τ = τ0 then after this
time the corresponding supercritical solution still has the same form. However, the metric
functions a(τ) and B(τ) are different. They, as well as the control function χ should be
determined by solving the corresponding set of equations. The form of these equations
depends on how many inequality constraints are imposed and what is their structure.

The Riemann curvature tensor for the metric (42) has four independent non-vanishing
components

(44) Rτ̂ t̂τ̂ t̂ = −v, Rτ̂ θ̂τ̂ θ̂ = −q, Rt̂θ̂t̂θ̂ = u, Rθ̂φ̂θ̂φ̂ = p.

The hat over the indices means that the components of this tensor are calculated in the
orthonormal tetrad formed by unit vectors along the corresponding coordinate lines. The
independent basic curvature invariants (p, q, u, v) are

(45) p =
ȧ2 + 1

a2
, q =

ä

a
, u =

ȧḂ

aB
, v =

B̈

B
.
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A dot in these expressions means the derivative with respect to τ . For the subcritical
Schwarzschild metric these curvature invariants are

(46) p = v = −2q = −2u =
2M

r3
.

Invariant p is positive definite, while the other invariants do not have a definite sign.
This property makes the analysis of required inequality constraints more complicated.
In paper [9] we discussed a case of constraints which are linear functions of curvature
invariants (45). The main results of this study are the following. The required property
of the limiting curvature can be achieved if the following two constraints are imposed:

Φ1 = v − Λ = 0,(47a)

Φ2 = p− μq − λΛ = 0.(47b)

Here Λ = 1/�2 is the limiting curvature parameter, while μ ∈ (0, 1) and λ are two
dimensionless parameters. The transition from sub- to supercritical regime happens at
τ = τ0 where r = r0 = (2M�2)1/3. For λ > 1+μ/2 the first constraint which is saturated
is v = Λ. For a supercritical solution in this regime the invariants p and |q| still grow.
When condition (47b) is met the second constraint becomes active. This happens at
some time τ1 ≥ τ0. Study of the behavior of the control function χ1 associated with
constraint (47a) shows that it does not vanish at this point. This means that at the
second phase, that is beyond this point, both constraints (47a) and (47b) are valid. In a
general case such a supercritical solution does not leave this second phase after it enters
it.

Constraint (47a) has a simple solution

(48) B(τ) = B0 cosh
[
�−1(τ − τ0 + φ)

]
.

Parameters B0 and φ are defined by continuity conditions at τ = τ0. Solution (48)
has the same form for both supercritical phases. Let us consider a (τ, t) sector of the
metric (42). Its 2D metric is

(49) dS2 = −dτ2 +B2(τ)dt2.

For B(τ) defined by (48) this is 2D de Sitter metric with curvature (2)R = �−2 = Λ.
Thus, the supercritical solution for the interior of 4D black hole in its 2D sector (τ, t) is
the same as a solution for the interior of 2D black hole discussed in the previous section.

The second constraint (47b) gives a nonlinear second order ordinary differential equa-
tion for function a(τ). For the imposed condition 0 < μ < 1 a solution of this equation
has two turning points amin < amax, where ȧ = 0. If M � �, then amin is close but
slightly bigger than �, while amax ∼ (2M�2/λ)1/3. Let us denote

(50) dΓ2 = −dτ2 + a2(τ)dω2.

Then the solution of the constraint equation (47b) describes a 3D oscillating closed
universe.

To summarize, the interior of a 4D spherically symmetric black hole in the LCG model
with linear in curvature constraints is a 3D space which is exponentially expanding in
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one direction, determined by its Killing vector ξ = ∂t, and it is oscillating in the other
two (spherical) directions. It is possible to check that all the invariants (p, q, u, v) for
this solution remain bounded and their values are uniformly restricted by a quantity
proportional to the limiting curvature Λ. Derivation of these results and their detailed
discussion can be found in [9].

6. – Bouncing cosmologies in LCG theory

As the last example of application of the LCG theory let us discuss a case of the
cosmology. Namely, we assume that a homogeneous isotopic universe filled with thermal
radiation is in its contraction phase. Its metric is

(51) ds2 = −dτ2 + a2(τ)dγ2,

where dγ2 = γijdx
idxj is a line element on a unit round 3D sphere S3. The metric ds2

is conformally flat so that its Weyl tensor vanishes. We consider curvature invariants
which are scalar functions of the Ricci tensor Rαβ .

According to the General Relativity a collapse of such universe ultimately causes the
cosmic scale factor a(τ) to reach zero and the contraction of the universe ends by the Big
Crunch with the curvature singularity formation. In paper [10] we demonstrated that in
the LCG model such a singularity is absent. Instead of it the universe has a Big Bounce
after which it becomes expanding. Let us briefly discuss these results.

The Ricci tensor calculated for the metric (51) is

(52) Rμ
ν = diag(3q, q + 2p, q + 2p, q + 2p),

where

(53) q =
ä

a
, p =

ȧ2 + 1

a2
.

Scalar curvature invariants are functions of p and q, and the corresponding inequality
constraint can be written in the form

(54) Φ = Φ(p, q,Λ) ≤ 0.

The simplest choice of the constraint function Φ is

(55) Φ = p− μq − Λ = 0, 0 < μ < 1.

Let us note that this constraint is similar to the constraint (47b) which was discussed in
the previous section. We again define a critical length by �, so that Λ = �−2.

In the subcritical regime where p− μq−Λ < 0 a solution coincides with a solution of
the Einstein equations. The stress-energy tensor of the thermal radiation is

Tμ
ν = diag(−ε, P, P, P ) ,

where ε is the energy density and P is the pressure. The conservation law Tμ
ν;μ = 0 is

satisfied if

ε = Aa−4,(56)
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where the factor A is defined by the total (conserved) entropy of the universe S

(57) A = ν�c
( S

kB

)4/3

, ν =
3

16π3

( 90

nπ

)1/3

.

For pure electromagnetic radiation n = 2 and ν ≈ 0.015.

At the contraction phase of the radiation dominated universe the following relation
is valid:

(58) q = −p .

During the contraction of the universe both invariants p and |q| grow until the constraint
function Φ reaches its critical value. After this a solution becomes supercritical and it
follows the constraint equation (55). It is possible to show that for this solution the
invariant p monotonically grows until a(τ) reaches its minimal value amin which is of
order of � but slightly bigger than it. After this the scale function a(τ) grows. Similarly
to the case of the 4D black hole interior, there also exists a second turning point where
ȧ = 0 and a(τ) has maximum. However, before this the supercritical solution crosses
the line (58) on the (p, q) plane. Because of the symmetry of the equation for the
control function χ it vanishes at this point, and instead of further motion along the
constraint (55) the solution returns to its subcritical regime. This subcritical solution
describes an expanding universe filled with the thermal radiation. Thus in the LCG
theory a contracting homogeneous isotropic universe has a Big Bounce instead of a Big
Bang singularity. Derivation of these results and their detailed discussion can be found
in a recent paper [10].

7. – Discussion

In this paper we discussed two types of models which satisfy the limiting curvature
condition. In sect. 2 a wide class of spherically symmetric metrics describing nonsingular
black holes is presented. These metrics which contain two arbitrary functions of one vari-
able present a far-going generalization of Hayward-Vaidya metrics. One of the functions,
a mass function m(v), controls the black hole mass and the null fluid flux responsible
for its change. The other one, a structure function F (x), is responsible for properties
of the nonsingular black hole interior. These metrics have an interesting property: the
curvature invariants calculated for them do not depend on the mass function and after
imposing simple restrictions of the structure function they obey the limiting curvature
condition.

In the second part of the paper we discuss a new recently proposed limiting curvature
theory of gravity. In this theory the Einstein-Hilbert gravitational action is modified by
adding to it terms which guarantee that inequality constraints for chosen curvature in-
variants are satisfied. We discussed application of LCG theory to three cases: 2D dilaton
gravity black holes [8], 4D spherically symmetric LCG modification of the Schwarzschild
metric [9] and to bouncing cosmologies [10]. As further applications of the LCG theory it
would be interesting to discuss such “hot” subjects as the large scale structure formation
in bouncing cosmological LCG models, possible anisotropy suppression in anisotropic
cosmologies and the interior structure of charged and rotating D black holes.
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