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Summary. — The field of asymptotically safe matter-gravity systems is maturing
from the study of simple toy models to the exploration of sectors of the Standard
Model and beyond. This status update reviews the current state of the art and
points out open questions and future perspectives.

1. – Introduction: a symmetry principle for the fundamental description of
gravity and matter

The Standard Model (SM) of particle physics and General Relativity (GR) are ex-
tremely successful effective field theories, describing the outcome of a multitude of ex-
periments. Both can be quantized perturbatively, but break down at large energy scales.
This breakdown is encoded in trans-Planckian Landau poles in the SM (which prevents
an ultraviolet (UV) extension beyond the scale of the Landau poles and signals a trivial-
ity problem) and in the infinitely many counterterms in GR (which cause a breakdown of
predictivity, because each counterterm comes with a free parameter). As a consequence,
we only understand the gravitational interaction of elementary particles at sub-Planckian
energies, where it is extremely weak and thus negligible. At the Planck scale, where the
gravitational interaction between elementary particles is expected to be non-negligible,
the combined effective field theory of the SM and GR breaks down.

This problem is often approached by conjecturing novel symmetries. Many symmetry
principles, such as local and/or global symmetries in the SM and GR as well as Beyond
SM (BSM) theories, are already present in a classical theory. However, we are looking for
a quantum theory of all fundamental forces and elementary particles. Thus, we are led to
ask, whether there is a symmetry principle that is inherent to the quantum nature of those
forces and particles. The answer is given by the asymptotic safety framework: quantum
scale symmetry, i.e., scale symmetry generated by quantum fluctuations, enables a UV
extension of effective field theories and imposes predictivity on effective field theories.
Thus, both problems of the combined effective field theory of the SM and GR can in
principle be addressed by quantum scale symmetry.

Quantum scale symmetry corresponds to an interacting fixed point of the Renormal-
ization Group (RG). The RG encodes how the dynamics of a theory change, as virtual
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quantum fluctuations are integrated over in the path integral. For a generic set of fields
and interactions, the RG flow is non-vanishing, i.e., quantum fluctuations typically gen-
erate a scale dependence in the theory. Scale symmetry is achieved at fixed points of the
RG. At free (non-interacting) fixed points, the effect of quantum fluctuations is switched
off; thus the existence of free fixed points is automatic. In contrast, at interacting fixed
points, quantum fluctuations are present and balance out in a non-trivial way to generate
scale symmetry.

Scale symmetry can be detected in the dimensionless counterparts gi(k) of all cou-
plings ḡi of the theory; where i labels all couplings and typically i ∈ [1,∞) and where k
is an energy/momentum scale. In these dimensionless couplings, the explicit presence of
a scale is removed and scale symmetry implies gi(k) = const.

A given fixed point at gi = gi ∗ can be realized either in the UV or the infrared (IR),
depending on the choice of RG trajectory: given the values of all gi at some finite scale
k0, gi(k0) = gi,0, we can follow the RG flow to the IR to determine whether the fixed
point is reached in the IR. A given fixed point is reached in the IR, if the initial conditions
gi 0(k0) lie in its IR critical hypersurface. From the UV to the IR is the natural direction
of the RG flow, agreeing with its interpretation as a form of coarse graining. Purely
mathematically, the RG flow can be inverted to follow it into the UV and determine
whether the “initial conditions” g(k0) = gi,0 can be reached from the fixed point gi ∗
as the UV fixed point. This occurs, if the initial conditions lie in the fixed point’s UV
critical surface. A given fixed point is therefore, unless it has a zero-dimensional UV or
IR critical surface, not a priori a UV or IR fixed point —it depends on the trajectory,
that is selected.

The UV critical surface is spanned by the relevant directions, i.e., (superpositions of)
couplings(1), along which quantum fluctuations drive the dynamics away from quantum
scale symmetry. The IR critical hypersurface is spanned by the irrelevant directions,
i.e., (superposition of) couplings, along which quantum fluctuations drive the dynamics
towards quantum scale symmetry.

Relevant and irrelevant directions are associated to positive and negative critical
exponents. Critical exponents parameterize the linearized flow about a fixed point:

(1) gi(k) = gi ∗ +
∑
j

cj V
j
i

(
k

k0

)−θj

,

where V j is the j-th eigenvector of the stability matrix that is built from derivatives of
the beta functions βgi = k∂k gi(k):

(2)

(
∂βgi

∂gj

) ∣∣∣
�g=�g∗

V j = −θj V
j .

The eigenvalues of the stability matrix are multiplied by an additional negative sign to
obtain the critical exponents θi. In this way, the critical exponents at the free fixed
point correspond to the canonical dimensionality of the couplings ḡi. At an interacting
fixed point, interactions at the fixed point shift the scaling spectrum (the set of critical
exponents) away from their canonical values.

(1) The relevant and irrelevant directions at an interacting fixed point are often superpositions
of couplings. If this is the case, an adapted basis in the space of couplings can be chosen.
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Even if the fundamental interactions are scale invariant, there must be a scale ktr
at which the RG flow departs from a UV fixed point, because elementary particles and
their fundamental interactions exhibit scale dependence at low energies (low k). Thus,
the constants of integration, cj in eq. (1), determine the low-energy values of the cou-
plings. Relevant couplings are not theoretically restricted in their departure from scale
symmetry: they can depart from scale symmetry at any scale and a range of values for
these couplings is compatible with scale symmetry in the UV. If there are several relevant
couplings in the theory, then there are (largely independent) IR ranges for each one of
them, parameterized by different sets of choice of the corresponding cj . Thus, the values
of cj for relevant directions can only be determined from experimental input, but are free
parameters of the theory.

We now consider the predictions of coupling values that arise from a UV fixed point
and are connected to the irrelevant couplings. If the linearized flow about the fixed
point was an exact description of the flow even further away from the point gi ∗, then
irrelevant couplings would have to satisfy gi(k) = gi ∗ for all k. Hence, their values would
be fixed at all scales by the requirement of UV scale symmetry. The deviation of relevant
couplings from the fixed-point value, which occurs below the transition scale k, would
leave the irrelevant couplings untouched. However, further away from the point gi ∗,
the critical surface exhibits curvature. Thus, when relevant couplings depart from the
fixed-point values, they pull the irrelevant couplings with them. The values of irrelevant
couplings are still determined at all scales, because even in the deep IR, far away from
the fixed-point regime, they remain fully determined by the relevant couplings; the cj
for irrelevant directions are not free parameters.

2. – Observables and observations

Irrelevant couplings are predicted (at all scales k) by requiring quantum scale sym-
metry in the UV. These predictions are testable, because couplings enter observables,
such as scattering cross-sections, masses, etc. These predictions concern experimentally
accessible (e.g., by the LHC) scales. In most cases, the relevant experimental measure-
ments have already been made. Thus, the data to test predictions resulting from an
asymptotically safe UV extension of the SM with gravity, already exists —and just waits
for us to test quantum gravity with it(2).

Such tests of quantum gravity are based on low-energy observables. This circum-
vents a tricky problem in quantum gravity, namely that (formal) observables have to be
non-local in the absence of a preferred background (and thus rather difficult to access in
practice —calling into question the practice of calling them “observables” without the
clarifying descriptor “formal”), because at low energies, either a (near) flat background
emerges dynamically from a quantum gravity theory, or that theory is ruled out be-
cause it cannot reproduce the large-scale spacetime structure in our universe. On a flat

(2) The same reasoning applies in other quantum gravity approaches: they all have a landscape
(matter theories compatible with a UV completion within the given quantum-gravity approach)
and a swampland (matter theories compatible with a UV completion within the given quantum-
gravity approach). The size of swampland and landscape might be very different from approach
to approach, thus some approaches might be much easier to rule out than others. In practice,
most is known or conjectured about the swampland/landscape in string theory and asymptotic
safety (using functional Renormalization Group tools —a few results find support from lattice
approaches, such as the existence of light fermions [1] in [2]).
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background, the standard, observationally accessible particle-physics observables indeed
emerge from the formal observables of background-independent quantum gravity.

3. – Effective and fundamental asymptotic safety and their phenomenology

An RG fixed point with at least one relevant and at least one irrelevant direction
can be phenomenologically relevant in two different ways, assuming that there is at least
one trajectory emanating from the fixed point to a regime where predictions agree with
observations: first, it can be a true UV fixed point at which one can formally take k → ∞.
Towards the IR, the flow then departs from the fixed point along its relevant direction(s)
at k = ktr. Second, it can be an intermediate fixed point, at which one cannot take the
formal k → ∞ limit. Instead, beyond kUV, a different, microscopic theory is realized
(one can in principle think of string theory, loop quantum gravity or even causal sets
here). The microscopic theory provides initial conditions for the RG flow in its effective
description, i.e., it determines the values of all couplings at kUV. If those lie on the IR
critical surface of the fixed point, then the flow passes very close to the fixed point on its
way to the IR. The fixed point generates universality, in that different initial conditions
on its IR critical surface lead to very similar low-energy values of the couplings. For
the irrelevant directions of the fixed point, the low-energy values lie very close to the
predictions generated by a true fixed-point trajectory.

This idea has first been put forward in [3], expanded in [4] and applied to the string-
theory context in [5-8]. A quantitative measure of predictivity in effective asymptotic
safety has been developed in [9].

4. – Key basics of functional renormalization group flows

Here, the question whether or not gravity on its own is asymptotically safe or not
is left aside. This question is irrelevant for a description of quantum gravity in our
universe(3). Most evidence for asymptotic safety in gravity-matter systems comes from
functional Renormalization Group techniques [10, 11], reviewed in [12]. Reviews that
focus mostly on the asymptotic-safety paradigm for gravity can be found in [13-15], text
books in [16, 17]. The interplay with matter is reviewed in [18, 19] and recent lecture
notes on the asymptotic-safety paradigm are [20, 21]. Critical reflections of the current
state of the art can be found in [22,23].

The functional RG approach provides a differential equation for the scale derivative
of the effective dynamics, based on an IR cutoff in the generating functional. This
equation can be viewed as a compact summary of all beta functions of the theory. It
allows to search for a fixed point, βgi = 0. In a second step, once a fixed point is
found, the beta functions can be integrated from the corresponding initial condition
gi(k = kUV � ktr) = gi ∗ to obtain the corresponding predictions gi(k → 0). The RG
flow of gravity-matter systems has three regimes, see fig. 1.

The k dependence of couplings is not directly physical, see [22, 23], because a given
physical system does not typically feature an IR cutoff that resembles the cutoff in the
setup of the functional RG. The limit k → 0 is physical, because it corresponds to

(3) We work under the assumption that matter is at least partly non-emergent, i.e., that a
quantum field theory of the metric, if asymptotically safe, would not give rise to the matter and
force fields of the SM as emergent, collective, low-energy degrees of freedom.
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Fig. 1. – An example of a gravity-matter RG flow, following [49]: beyond the Planck scale,
couplings are either constant (asymptotically safe), or grow away from an asymptotically free
fixed point. At highly trans-Planckian scales, a fixed point is realized which is interacting in a
subset of couplings and free in others. The Newton coupling G is a relevant coupling and can be
chosen to depart from its fixed-point value at any scale. To reach the correct low-energy value,
the scale of departure is chosen to be the Planck scale. As soon as G departs from its fixed-point
value, its canonical scaling G ∼ k2 drives it to very small values. Thus, gravity fluctuations
decouple dynamically at the Planck scale. Next, all irrelevant matter couplings that are held
at interacting fixed-point values by gravity, start to run. For these couplings, asymptotic safety
provides a unique initial condition at the Planck scale. In contrast, for relevant couplings, a
range of initial conditions is available at the Planck scale. At k → 0, couplings approach low-
energy values that can be compared to experiment. In the sub-Planckian regime, k < MPlanck,
the RG flow of the marginal Standard Model couplings (strong gauge coupling g3, SU (2) gauge
coupling g2, hypercharge coupling gY , top Yukawa coupling yt, bottom Yukawa coupling yb and
Higgs quartic coupling λ) exhibit a flow closely resembling the perturbative RG flow in the SM.
The most significant difference is that λ > 0 at all scales, resulting in a Higgs mass that lies
above the measured value.

the limit in which all quantum fluctuations have been integrated over(4). Therefore,
the predictions that arise for the low-energy values of couplings are physical predictions
relevant for a comparison with experiment.

The beta functions of the functional RG approach are related to those in a pertur-
bative setting as follows: for canonically marginal (i.e., dimensionless) couplings, the
one-loop coefficients are universal in that they agree between all schemes. This holds for
those one-loop coefficients that themselves depend on marginal couplings. Beyond one
loop, the universality of beta functions of marginal couplings is lost (beyond two loops
if one works in a mass-independent scheme). For canonically non-marginal couplings,
already the one-loop coefficient is non-universal.

Thus, physical observables —many of which can be calculated using a combination
of different beta functions— arise from different “building blocks” in different schemes.
Another universal piece of information encoded in beta functions is the existence of a
fixed point. A final universal piece of information is the set of critical exponents, and
thus the predictivity of a fixed point.

As a key open question, the functional RG approach to asymptotic safety is
based on Euclidean signature. It is a main assumption of the approach, that

(4) A physical scale dependence of couplings is present in this limit, because appropriately
defined couplings depend on physical scales, such as momenta, curvature scales, etc.
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Euclidean-signature results have some relevance for Lorentzian quantum gravity. In
the deeply non-perturbative regime of quantum gravity, this is a strong assumption.
However, [24-26] find indications that asymptotically safe gravity-matter systems exhibit
near-perturbative behavior and [27-31] find indications strongly coupled gravity-matter
systems are not asymptotically safe. We conjecture that such near-perturbative behavior
implies that a near-flat background emerges dynamically, already at scales around the
Planck scale. Around such a background, an analytical continuation from Euclidean to
Lorentzian signature is possible (for suitable behavior of the graviton propagator [32-34]),
and has indeed been recently achieved [35]. Therefore we conjecture that results on
near-perturbative, Euclidean, asymptotically safe gravity-matter systems do in fact have
relevance for our Lorentzian universe.

5. – Unavoidable interactions

When gravity is interacting, one expects that it will mediate effective matter inter-
actions —simply because gravity fluctuations cannot be decoupled from matter. Indeed,
certain matter self-interactions and non-minimal matter-gravity couplings are unavoid-
able at an asymptotically safe fixed point [1, 27-31, 36-38]. These interactions are deter-
mined by the global symmetries of the kinetic terms of the matter fields. These kinetic
terms give rise to matter-gravity vertices and act as “seeds” from which gravity fluctu-
ations generate matter interactions. The generated matter interactions are symmetric
under the global symmetries of the kinetic terms. This observation has been explained
based on the diagrammatic structure of the flow equation in [30], and has been shown
more formally for shift symmetry in scalar-gravity models in [38]. In [39] it has addi-
tionally been shown that the full global symmetry of the kinetic term for scalars is not
broken to a discrete symmetry by gravity fluctuations. In [30], the result has been dis-
cussed in the light of the folklore theorem that quantum gravity must break all global
matter symmetries. In short, either asymptotic safety is a counterexample (which might
be related to the possibility of black-hole remnants), or the Euclidean nature of func-
tional RG calculations implies that symmetry-breaking black-hole configurations are not
properly accounted for in the path integral. Topological fluctuations might also play a
role in this context —although it is not established whether or not topology actually
fluctuates in quantum gravity— and [40] has recently argued that these would lead to
the breaking of chiral symmetry for fermions.

The induced interactions are not expected to be accessible to direct measurements.
This is because interactions that respect the global symmetries of the kinetic terms of
various matter fields are all canonically higher-order interactions. Thus, even if they are
finite in the asymptotically safe fixed-point regime, they are quickly driven to zero in
the sub-Planckian regime of the flow, where gravity fluctuations decouple and we assume
that perturbation theory becomes a good approximation. Nevertheless, these couplings
give rise to important constraints on the asymptotically safe fixed-point regime, discussed
below.

5
.
1. The weak-gravity bound . – The first constraint on the fixed-point regime arises

from scalar self-interactions, vector self-interactions, and fermion-scalar interactions. In-

teractions like (gμν∂μφ∂νφ)
2
,
(
gμκgνλFμνFκλ

)2
and ψ̄ /∇ψ gμν∂μφ∂νφ (with φ a scalar,

ψ a fermion and Fμν the field-strength tensor) cannot have vanishing couplings under
the impact of gravity. Thus, the existence of a fixed point for these couplings is a cru-
cial question, unlike for couplings which can remain zero under the impact of gravity.
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Fig. 2. – Comparison of the weak-gravity bound in the plane spanned by the dimensionless
Newton coupling G and dimensionless cosmological constant Λ. The region above and to the
right of the green dotted (blue dashed) line (in grey, labelled by “WGB”) is excluded when
scalars (gauge fields) are present; the region above the dot-dashed line is excluded when scalars
and fermions are present.

In [27,28,30], it was found that once gravity fluctuations exceed a critical strength, they
push the fixed-point values for these couplings into the complex plane. At that point,
an asymptotically safe gravity-matter fixed point can no longer exist. In turn, the grav-
itational couplings are constrained to be sufficiently weak. The bound beyond which
they push matter couplings into the complex plane is the weak-gravity bound, which
bounds the regime in which gravity is sufficiently weakly coupled to allow for minimally
interacting fixed points in the matter sector.

The weak-gravity bounds that arise from different matter sectors delineate a qualita-
tively similar region in the gravitational parameter space [41], cf. fig. 2. Furthermore,
the boundary depends only weakly on the number of matter fields [30, 31]. Thus, the
different matter sectors distinguish a preferred and an excluded region in the gravita-
tional parameter space. Gravitational fixed-point values lie close to the boundary of
the excluded region for purely gravitational systems (where it depends on the choice of
truncation, whether the gravitational fixed point ends up beyond or below the bound-
ary [30, 36, 38]), but move away from this region, when appropriate matter fields (with
spin 1/2 or spin 1) are added to the system [30].

5
.
2. Light fermions . – The lightness of fermions compared to the Planck scale is one

of the remarkable aspects of the SM, giving rise to fundamental and composite particles
for which the gravitational interaction is completely negligible at energies close to the
fermionic mass scales. This is due to chiral symmetry, which implies that left-handed and
right-handed fermions transform separately and which would be violated by an explicit
mass term. In the SM, it is broken spontaneously by the electroweak symmetry breaking
and in QCD. In the SM, these two effects give rise to the observed masses of fermions
and their bound states.

If another interaction broke chiral symmetry at higher scales, it would generate cor-
respondingly more massive bound states and thus be incompatible with observations.
Thus, diagnosing whether quantum-gravity fluctuations lead to the breaking of chiral
symmetry and generation of bound states is an important test.
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Chiral symmetry breaking is linked to divergences in four-fermion interactions: when
these diverge, a corresponding bound state forms. In [1], it was shown that gravity
prevents this mechanism from occurring, despite inducing four-fermion interactions. No
matter how strong gravity fluctuations become, they always lead to finite values of four-
fermion interactions [29,42]. This is because such gravitational contributions that would
lead to a loss of fixed points (and thus a divergence), exist (just like they do for the
interactions that feature a weak-gravity bound), but are counteracted by gravitational
interactions that produce a change in scaling dimension of these operators.

The situation changes once an Abelian gauge field is added under which the fermions
are charged. Then, gauge field fluctuations can be strong enough to overcome gravi-
tational fluctuations, and lead to chiral symmetry breaking at the Planck scale. This
mechanism can be prevented, if gauge field fluctuations cannot become strong enough.
In turn, the fixed-point value for the gauge coupling, and thus the strength of gauge field
fluctuations, decreases with the number of charged fermion species in the system. As a
consequence, light charged fermions can exist only above a critical number of charged
fermions. A first estimate of this critical number in [43] is approximately 3. Such a
mechanism might in fact explain why several generations of fermions exist.

Additionally, upper bounds on the number of fermion species arise, if gravitational
catalysis due to background spacetime curvature becomes relevant [44, 45]. Finally, [40]
has argued that topological fluctuations of spacetime provide an additional symmetry-
breaking effect.

6. – Status of the asymptotically safe standard model with gravity

6
.
1. Parameterized approach: Available universality classes. – In the literature, two

different ways of reporting the effect of gravity on matter are used: in the first, gravi-
tational fixed-point values within a given truncation are used and quantitative effects of
gravity on matter are reported; in the second, gravitational fixed-point values are left
as free parameters. In this way, an understanding of possible quantum-gravity effects
throughout the entire parameter space can be developed (and the first approach can be
taken at a later stage). This has the added advantage that one can straightforwardly
generalize from a parameterization of the gravitational parameter space to a parame-
terization of more general new physics: gravity contributes to the flow of canonically
marginal matter couplings through anomalous scaling terms, e.g.,

βgY = −fg gY +
41

6 · 16π2
g3y + · · · ,(3)

βyb/t
= −fy yb/t +

yb/t

16π2

(
3

2
y2b/t +

9

2
y2t/b − 3

(
1

36
+ Y 2

t/b

)
g2Y

)
+ · · · ,(4)

where gY is the Abelian hypercharge coupling and yb/t are the bottom and top quark
Yukawa coupling, respectively, which carry hypercharges Yt = 2/3 and Yb = −1/3.
fg parameterizes the gravitational contribution to the Abelian gauge coupling (which
is the same for the other two gauge couplings in the SM) and fy parameterizes the
gravitational contribution to the Yukawa couplings (that is the same for all Yukawa
couplings in the SM). Both fg and fy depend on the gravitational fixed-point values and
explicit expressions can be found in [27,29,46] for fy and [47,48] for fg; both are constant
beyond the Planck scale and vanish quickly below the Planck scale due to the scaling
G ∼ k2 of the Newton coupling that both are proportional to.
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From eqs. (3) and (4), we see that fg < 0 and fy < 0 are phenomenologically prob-
lematic: for these values, gY and yb/t only have IR attractive fixed points at zero. Thus,
these couplings vanish in the UV, down to the Planck scale. Below, they remain zero
because symmetries forbid their generation, once they are set to zero.

Further, from eqs. (3) and (4) we see that for fg > 0 and fy > 0, the free fixed points
in the matter couplings are IR repulsive, allowing to reach non-vanishing IR values of
these couplings.

Finally, from eqs. (3) and (4) we see that there are interacting fixed points for fg > 0
and fy > 0. These are IR attractive, and thus provide not just a non-vanishing value of
these couplings in the UV, but also a unique, non-vanishing value in the IR. From the
combination of eqs. (3) and (4), we also see that a non-zero fixed-point value gY ∗ > 0
is necessary to generate a difference between the predicted value for top and bottom
Yukawa. In [49] it was shown that eqs. (3) and (4), supplemented by the beta functions
for the non-Abelian gauge couplings, which remain asymptotically free in the presence
of gravity [50, 51], values for fy and fg exist, for which gY , yt and yb take on IR values
in the vicinity of their SM values.

6
.
2. Asymptotically free quark sector . – Going beyond the third generation of quarks

in eqs. (3) and (4), CKM mixing has to be taken into account. It turns out that the CKM
matrix elements run very slowly, so that to see the effect of their running, we have to
consider immense ranges of scales [52]. One can have the following attitude to this range
of scales: i) if asymptotic safety is fundamental, then a QFT description in principle
makes sense to arbitrarily high scales, thus the huge range of scales may be unusual, but
not non-sensical; ii) if asymptotic safety is effective, then such huge ranges do not make
sense and then CKM running can be neglected for practical purposes.

In [52], it was found that under the impact of gravity, the gravity-generated, asymp-
totically free fixed point that exists for fg > 0 and fy > 0, can be connected to IR
values for gauge and Yukawa couplings and CKM matrix elements which are those of
the SM. On the way from the UV fixed point to the IR, the flow passes in the vicinity of
interacting fixed points, which leave their imprint on the IR predictions.

The full situation including leptons is currently an open question; the third generation
including leptons and a neutrino Yukawa coupling was investigated in [4].

6
.
3. Preferred region in parameter space and gravity-matter interplay . – For the gauge

coupling, fg > 0 is realized across all values of G and Λ < 0.5 (the latter bounds the
basin of attraction of the gravitational fixed point) [48, 50, 51, 53]. A similar statement
is true for fλ, which is the analogous quantity to fg and fy, but for the Higgs quartic
coupling, see [26,54-56].

For fy, the situation is more intricate, because it is not positive everywhere in the
gravitational parameter space. Thus, phenomenological viability singles out the region,
where fy > 0 holds, see [27,29,46]. Specifically, the region that is excluded has significant
overlap with the strong-gravity regime, which is excluded by the weak-gravity bound.
Thus, two independent mechanisms rule out (partially overlapping) parts of the strong-
gravity region.

This is a further indication for the near-perturbative nature of these types of matter-
gravity models. Physically, this motivates why the SM could emerge as a perturbative
theory from a gravity-matter model just below the Planck scale. Mathematically, this
provides us with a handle to control calculations of matter-gravity models with functional
RG techniques.
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The crucial question in this context is whether or not gravitational fixed-point values
fall into this preferred region of parameter space or not. We point out that two distinct
approaches to calculating these fixed-point values (which differ because of the breaking of
diffeomorphism symmetry by the functional RG setup) are not yet converged. Here, we
quote results from background field calculations, which satisfy an (auxiliary) background
diffeomorphism symmetry. In these calculations, the gravitational fixed-point value falls
into the excluded region under the impact of one and even two generations of SM matter,
but moves into the allowed region, once the third generation is added [57,58].

6
.
4. Higgs mass. – In [59] it was proposed that the Higgs quartic coupling could be

predicted, starting from a fixed point with gravity. This would make the ratio of Higgs
mass to electroweak scale predictable. In the meantime, evidence for this mechanism has
accumulated [26, 55, 56, 60-63]. In contrast to the prediction of masses of fermions from
asymptotic safety, the numerical value of the prediction is much less uncertain, because
the prediction only depends on the sign, but not the size, of the quantum gravitational
corrections. Whether the prediction agrees with experiment depends on the top quark
mass [64]; in BSM settings, asymptotic safety could also predict a lower value of the
Higgs mass, compatible with observations even at high values of the top quark mass [65].

6
.
5. 4 dimensions . – What is special about 4 spacetime dimensions in the asymptotic-

safety framework? The answer is that the interactions of the SM are marginal in 4
spacetime dimensions. In turn, this is key to achieve a UV completion of the SM through
fg > 0. In d > 4, the beta function of the Abelian gauge coupling gY takes the form

(5) βgY =

(
d− 4

2
− fg(d)

)
gY + · · · ,

such that fg > (d − 4)/2 is necessary for this sector to be UV complete. In turn fg
is achievable, if gravitational fluctuations are strong enough. However, in sect. 5.1, we
discussed that gravitational fluctuations must not become too strong, least they trigger
new divergences in higher-order couplings. Thus, d = 4 (and potentially d = 5) appear to
be the only dimensions, in which fg can be achieved without exceeding the weak-gravity
bound and losing the fixed point [31,66].

7. – Beyond the standard model

7
.
1. Dark matter models. – A major challenge for the search for dark matter is the

huge, theoretically viable parameter space of dark matter models. First, the composition
of dark matter (e.g., whether it is one or several species of fields), second, its mass scale
and third, its interactions, are theoretically very little constrained. Thus, experiments
face a tremendous challenge.

Asymptotic safety could provide constraints on dark matter, such that parts of the
parameter space may be theoretically excluded due to the predictive power of asymptotic
safety.

A first example is the Higgs portal coupling λH H†H φ2, between the Higgs field H
and a dark scalar φ that is uncharged. The beta function of that coupling takes the form

(6) βλH
= −fλ(G)λH +O(λ2

H),
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where fλ(G) is a function of the dimensionless Newton coupling G and further gravita-
tional couplings, and is negative. Thus, λH is driven to zero under the impact of gravity
fluctuations, i.e., the dark scalar decouples [55]. Demanding asymptotic safety, we find
a fixed point at λH ∗ = 0, which is infrared attractive. Thus, the portal coupling is zero
in the trans-Planckian regime, where gravity fluctuations prevent its growth. Below the
Planck scale, it cannot be generated, because once set to zero at the Planck scale, matter
fluctuations cannot generate it. Thus, the “vanilla” model of dark matter of a single
dark scalar is not compatible with asymptotic safety, if it is to be generated as a thermal
relic, which needs λH �= 0.

This demonstration of the predictive power of asymptotic safety was followed by the
development of models of extended dark sectors which circumvent the decoupling result
due to a more intricate structure of the dark sector. [67] and [68] use additional fields that
can regenerate the Higgs portal below the Planck scale. In those cases, asymptotic safety
increases the predictive power of the model, compared to an effective field theory setting.
A large increase in predictive power was also found in [69], in which the dark sector
consists of the dark scalar and a dark fermion, which interact through a Yukawa coupling
and are coupled to the SM through the Higgs portal. In a toy model of the system, it
was found that in the dark sector, the Yukawa coupling, the dark self-interaction, the
non-minimal coupling, the mixing angle to the SM scalar and the Higgs portal coupling
are all calculable as a function of the dark scalar mass. The model is not viable, if
the dark sector does not undergo spontaneous symmetry breaking, such that the dark
fermion becomes massive and becomes the dark-matter candidate. Further, the dark
scalar mixes with the SM Higgs, lowering the mass of the Higgs within the toy-model
study [65](5).

7
.
2. Further BSM settings . – Besides settings with dark matter and/or additional

cosmological scalar fields, asymptotic safety with gravity has already been explored in
the context of the muon magnetic moment [70], of flavor anomalies [71], of axion-like
particles [72], Majorana masses [73], neutrino masses [62] and grand unified theories [74,
75]. In these works, the predictive power of asymptotic safety typically plays a key role
in narrowing down the parameter space compared to effective field theory settings. On
the one hand, this is quite useful for model building, because it provides a small set of
models that are not just phenomenologically relevant, but could be also fundamentally
viable. On the other hand, this is important in order to subject asymptotic safety to
further observational tests in the future.

7
.
3. Scalar potentials and cosmology . – Upcoming observations that will determine the

equation of state of dark energy more precisely could provide valuable information on
the underlying quantum-gravity theory [76]. In asymptotic safety, quantum fluctuations
of gravity drive scalar potentials towards flatness (with the exception of quadratic terms,
that typically remain relevant and thus correspond to free parameters in the infrared).
As two specific examples of this more general trend, the ratio of Higgs mass to elec-
troweak scale is predicted from a vanishing quartic coupling at the Planck scale, and the
decoupling of a single uncharged dark scalar is predicted from a vanishing Higgs-portal

(5) At a top mass of 173GeV, asymptotic safety predicts a Higgs mass a few GeV above the
measured value [59]. The top mass is subject to systematic uncertainties, so it is presently
unclear whether or not new physics (such as the mixing with a dark scalar) is required to
reconcile asymptotic safety and the measured Higgs mass.
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coupling at the Planck scale. For potentials in cosmology, this could mean that an ar-
bitrarily flat potential could be accommodated in asymptotic safety [26], as well as a
simple cosmological constant [77].

8. – Key open questions on asymptotically safe gravity-matter models

Key open questions can be divided into questions of a more technical nature and
questions of a more conceptual nature.

Open questions of technical nature are questions where proposals for dynamical mech-
anisms (e.g., for the prediction of certain SM couplings) exist, but the theoretical un-
certainties are too large to say with certainty whether or not such a mechanism predicts
the correct value. Uncertainties arise, on the one hand, from the use of truncations, and
can be reduced by successively choosing larger truncations. Uncertainties arise, on the
other hand, from the use of Euclidean signature, which, at least in a non-perturbative
quantum-gravity regime, does not straightforwardly connect to Lorentzian signature. In
this context, it is intriguing that asymptotically safe gravity-matter systems could be
near-perturbative. In that case, a regime with a (near-flat) background with small fluc-
tuations about it, could emerge dynamically in asymptotic safety. In turn, such a regime
might admit an analytical continuation.

A different strategy to reduce systematic uncertainties is by use of another method,
e.g., dynamical triangulations, in which some progress on the inclusion of matter degrees
of freedom has been made, and early results support previous findings with functional RG
techniques. One may hope that with the further advancement of these lattice techniques,
which are affected by different systematic uncertainties than functional RG studies, com-
plementary evidence for various properties of asymptotically safe gravity-matter systems
can be found.

Open questions of conceptual nature include, but are not limited to:
i) What is the nature of dark matter in asymptotic safety?
ii) Is there a preferred mechanism for baryogenesis in asymptotic safety?
iii) Which mechanisms to generate neutrino masses are compatible with asymptotic
safety?
iv) Is asymptotic safety compatible with BSM physics that can explain the muon mag-
netic moment as well as flavor anomalies?

These and other questions could, on the one hand, provide theoretical guidance for
particle physics phenomenology and ultimately even experimental searches. On the other
hand, the high predictive power that asymptotically safe gravity-matter models appear
to have could imply asymptotic safety makes rather specific predictions for the answers to
these questions, providing powerful ways to test asymptotic safety through observations.
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