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Summary. — In this mini review we consider nonlocal field theory including
nonlocal quantum gravity. We discuss gauge models with γ5-anomalies and show
how nonlocal field theory can help to make such models meaningful. We consider
the field theory with infinite number of local fields with local interactions and show
that an account of an infinite number of local fields leads to effective ultraviolet finite
nonlocal field theory. We also discuss nonlocal generalization of nonsupersymmetric
SU(5) Georgi-Glashow GUT and show that it is possible to solve the problems
with the proton lifetime and the Weinberg angle without introduction of additional
particles in the spectrum of the theory. Nonlocal scale Λ responsible for ultraviolet
cutoff coincides (up to some factor) with GUT scale MGUT ≈ 3 · 1016 GeV.

1. – Introduction

It is well known that d = 4 local field theories have ultraviolet divergences in pertur-
bation theory. The simplest way to deal with ultraviolet divergent Feynman diagrams
is the introduction of regularization. For instance, in Pauli-Willars regularization [1] for
scalar φ4-model the replacement of scalar propagator

(1) D(p2) =
1

m2 − p2 − iε
→ Dreg(p2) =

1

m2 − p2 − iε
− 1

M2 − p2 − iε

makes all Feynman integrals ultraviolet finite except vacuum diagrams. The main
drawback of Pauli-Willars regularization is that the introduction of the second term
− 1

M2−p2−iε in (1) is equivalent to the introduction of negative norm state with a mass

M in the spectrum. The φ4-model with Pauli-Willars propagator (1) is local and uni-
tary but it contains negative norm states that make reasonable physical interpretation
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of such model impossible. Many years ago Efimov [2-5] proposed to use nonlocal field
theory to make Feynman diagrams ultraviolet finite. The main idea of nonlocal field
theory consists in the replacement of the local propagator D(p2) to nonlocal propagator,
namely

(2) D(p2) → Dnl(p2) =
V (p2)

m2 − p2 − iε
,

where the nonlocal formfactor V (p2) is an entire function on p2 decreasing in the Eu-
clidean region at p2 → −∞, for instance V (p2) = exp[l2(p2 −m2)]. Another interesting
formfactor is

(3) V (p2) = VPW (p2)

[
1− sin

(
1− p2

M2

)
·
(
1− p2

M2

)−1
]
,

where

(4) VPW (p2) = 1− m2 − p2

M2 − p2 − iε
.

The formfactor V (p2) (3) is an entire function on p2 and V (p2) → VPW (p2) at p2 →
−∞. Efimov considered [2-5] nonlocal scalar field theory with formfactor satisfying the
following requirements:

1) V (z) is an entire function on z of the growth ρ ≤ 1/2.

2) V (z) ≤ Cexp(b|z|ρ).

3) V (z) = O(z−2) at Rez → −∞.

4) V (z) = O(exp(b|z|ρ) at Rez → ∞.

5) V (z) = V ∗(z∗).

6) V (m2) = 1.

On the example of scalar φ4-model Efimov proved that nonlocal field theory is unitary
and causal. Nonlocal propagator (2) corresponds to nonlocal free scalar action

(5) Sonl

∫
d4x

[
−1

2
φ(x)(�+m2)V −1(−�)φ(x)

]
,

where � = ∂μ∂μ. The use of nonlocal propagator (2) allows to cure bad ultraviolet
properties of the theory. One can obtain nonlocal formfactor V (p2) by the generalization
of Pauli-Willars regularization (1), namely one can consider the regularization with [5]

(6) D(p2) → Dreg(p2) =
1

m2 − p2 − iε
+

n=∞∑
n=1

cn(δ)
(−1)n

M2
n(δ)− p2 − iε

.
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Here parameter δ is the regularization parameter. One can choose [5] the cn(δ), Mn(δ)

in such a way [5] that in the limit of the regularization Dreg(p2) → V (p2)
m2−p2−iε . The

regularization (6) allows to prove [5] that nonlocal scalar φ4-theory is unitary, causal,
ultraviolet finite and nonlocal.

In this mini review I discuss the applications of Efimov nonlocal field theory to gauge
theories including γ5-anomalous theories and quantum gravity. Also I consider nonlocal
generalization of nonsupersymmetric SU(5) Georgi-Glashow GUT and show that it is
possible to solve the problems with the proton lifetime and the Weinberg angle without
introduction of additional particles in the spectrum of the theory. In nonlocal SU(5) GUT
nonlocal scale Λ responsible for ultraviolet cutoff coincides (up to some factor) with GUT
scale MGUT ≈ 3 · 1016 GeV. I discuss possible value of nonlocal scale in Nature and give
some arguments (not proof) that nonlocal scale O(1014)GeV ≤ Λ ≤ O(1018)GeV. Also
I consider the field theory with infinite number of local fields with local interactions and
show that an account of an infinite number of local fields leads to effective ultraviolet
finite nonlocal field theory.

2. – Local field theory with infinite number of local fields as origin of
nonlocality

In this section we discuss the possible origin of nonlocality related with the introduc-
tion of infinite number of local scalar fields φn(x) [6, 7]. Consider the model with the
Lagrangian

(7) Ltot = L0 + LI ,

where

L0 =
1

2

n=∞∑
n=o

(∂μφn∂μφn −M2
nφ

2
n),(8)

LI = −gφ4
eff (x),(9)

φeff (x) =
n=∞∑
n=0

cn(−�)n/2φn(x).(10)

The propagator for the effective field φeff (x) is the infinite sum of local propagators,
namely

(11) Deff (p
2) =

n=∞∑
n=0

c2n
(p2)n

M2
n − p2 − iε

.

The imaginary part of the propagator (11) is nonnegative and it coincides with the
imaginary part of the propagator for local field φ0

eff (x) =
∑n=∞

n=0 cn(M
2
n)

n/2φn(x)

(12) D0
eff (p

2) =

n=∞∑
n=0

c2n
(M2

n)
n

M2
n − p2 − iε

.
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For the model [6, 7] with M2
n = M2

0 + n ·M2
1 and c2n = al

l! , a > 0 the effective propaga-
tor (11) can be represented in the form

(13) Deff (p
2) =

1

M2
1

∫ 1

0

dx exp(axp2)x
−
[

p2

M2
1
+

M2
o

M2
1
−1

]
.

In the Euclidean region q2 = −p2 > 0 the propagator

(14) Deff (−q2) ∼
√

1

2πq2M6
1 a

2
exp

[
− q2

M2
1

− q2

M2
1

log(M2
1 a)

]
at q2 → ∞ for aM2

1 > 1.

As a consequence we find that all Feynman diagrams for the model (7)–(10) are ultraviolet
finite. So the model (7)–(10) describes an infinite number of local fields φn(x) with local
interactions containing higher-order derivatives for each local field. An account of infinite
number of local fields leads to nonlocal and ultraviolet finite theory. So we see that the
introduction of infinite number of local fields is an origin of nonlocality(1).

3. – Nonlocal gauge theories

The simplest nonlocal generalization of QED [5] consists in the replacement of local
free photon Lagrangian

(15) LA = −1

4
FμνFμν → Lnl,A = −1

4
FμνV −1(−∂μ∂μ)Fμν .

For nonlocal QED (15) the Feynman rules coincide with standard QED Feynman rules

except the replacement 1
p2+iε → V (p2)

p2+iε for local photon QED propagator. For formfactor

(16) V (p2) = O

(
1

p2

)
at p2 → −∞

all Feynman diagrams except one-loop correction to the photon propagator are ultraviolet
finite [5]. In nonlocal QED the interaction between two charges e1 and e2 is

(17) Wnl(r) =
e1e2
(2π)3

∫
V (−	k2)

	k2
exp(−i	k	x).

For local QED W (r) = e1e2
r and W (0) = ∞ while for nonlocal QED with the formfactor

(16) the value Wnl(r = 0) is finite. The straightforward generalization of nonlocal QED
to nonAbelian gauge theories consists in the replacement [8]

(18) LYM = − 1

2g2
Tr(FμνFμν) → − 1

2g2
Tr(FμνV −1(−Δ2)Fμν),

(1) The model (7)–(10) with finite number of scalar fields φn(x) with n ≤ N0 is nonrenormal-
izable. An acount of the infinite number of local fields φn(x) leads to ultraviolet finite theory.
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where Δ2 = (∂μ − iAμ)(∂μ − iAμ). Nonlocal Lagrangian (18) is the generalization of
Slavnov [9, 10] regularization with higher-order derivatives. Slavnov regularization is
the gauge invariant generalization of Pauli-Willars regularization. Slavnov regulariza-
tion corresponds to the formfactor V −1

Slavnov(−l2Δ2) = 1 + ck(l
2)k(Δ2)k. Slavnov has

proved [9, 10] that in his regularization all diagrams are ultraviolet finite except some
finite number of diagrams. For instance, for k = 2 all diagrams are finite except one-loop
propagators, three and four vertices. The increase of parameter k in Slavnov regular-
ization does not help to cure the remaining ultraviolet divergences. However in odd
dimensions (d = 5 for instance) one-loop diagrams are well defined and Slavnov regul-
rization leads to ultraviolet finite diagrams in all loops.

4. – γ5-anomaly and nonlocal theories

It is well known that triangle γ5-anomalies spoil the gauge invariance at one-loop
level [11,12]. As a consequence longitudinal and transverse photons interact at one-loop
level, which makes physical interpretation of γ5-anomalous models impossible. Consider
axial QED with the interaction

(19) Lint = eψ̄γμγ5ψAμ.

The Lagrangian of axial QED is invariant under gauge transformations

(20) ψ → ψ exp(ieγ5α), Aμ → Aμ + ∂μα.

Due to γ5-anomaly the effective Lagrangian is not invariant under gauge transformations,
namely [11,12]

(21) Leff (Aμ + ∂μα)− Leff (Aμ) =
αe3

12π2
εμνγβFμνFγβ .

To restore the gauge invariance (20) at quantum level let us add additional scalar field φ
which transforms as φ → φ+ α under the gauge transformations (20) and add the term
ΔL, namely

(22) L → L+ΔL,

(23) ΔL = − φe3

12π2
εμνγβFμνFγβ +

1

2
m2(Aμ − ∂μφ)V

−1
2 (−∂μ∂μ)(A

μ − ∂μφ).

The Lagrangian ΔL restores the gauge invariance at quantum level. Due to non-
local formfactor V2 and formfactor V for the free vector field Lagrangian LA =
− 1

4F
μνV −1(−∂μ∂μ)Fμν the modified axial electrodynamics becomes a superrenormaliz-

able model and it describes the interaction of massive vector field with fermions [13-16].
In unitary gauge φ = 0 nonlocal vector field propagator has the form

(24) Dμν(k) = V (k2) ·
[
gμν − kμkν

m2V (k2)V −1
2 (k2)

]
· (k2 −m2V (k2)V −1

2 (k2))−1.



6 N. V. KRASNIKOV

For γ5-nonanomalous models like QED the longitudinal part of the propagator (24) does

not contribute at mass shell. For V (k2)V −1
2 (k2) = k2

m2 the gauge propagator (24) is
transverse and triangle γ5-anomaly does not contribute. So in axial electrodynamics
it is possible to restore gauge invariance by the introduction of additional scalar field,
however due to γ5-anomaly the local version of the model with V2(k

2) = V (k2) = 1 is
nonrenormalizable. The introduction of nonlocal formfactors V (k2), V2(k

2) makes the
model superrenormalizable. It should be stressed that the limit m → 0 does not exist,
i.e., axial QED with massless gauge field does not exist.

5. – Nonlocal gravity

The action of Einstein gravity without Λ-term and matter is(2)

(25) S[g] =

∫
d4x

1

16πG
R
√
−g,

where g = Det(gμν), G
−1/2 ≡ MPL = 1.2 · 1019 GeV and R is the curvature. The use of

perturbative expansion gμν = ημν +κhμν around flat metric ημν = Diag(−1, 1, 1, 1) leads
to(3)

(26) S[g] =
n=∞∑
n=2

κn−2Sn,

where S2 is the quadratic action for graviton field hμν and higher-order terms Sn describe
selfinteractions of gravitons. Off shell Einstein gravity (25) is nonrenormalizable at one-
loop level [17]. On shell Einstein gravity (25) is nonrenormalizable at two-loop level [18].
The gravity action

(27) SSt[g] =

∫
d4x

1

16πG

√
−g

[
R+

a1
2
R2 +

a2
2
RμνRμν

]

describes renormalizable but nonunitarity theory [19]. For the model (27) free graviton
propagator is

(k2)−1[P 2
μναβ − 1

2
P 0
μναβ ]− P 2

μναβ(k
2 +m2

2)
−1 + (1/2)P 0

μναβ(k
2 +m2

0)
−1

+gauge-dependent terms.(28)

Here P 2,0
μναβ are Nieuwenhuizen-Riverse operators [20,21]. The propagator (28) describes

spin 2 masslesss graviton, spin 2 ghost with a mass m2 = (−2
a2

)1/2 and spin zero scalar

with a mass m0 = (3a1 + a2)
−1/2. The existence of ghost state in the spectrum makes

reasonable physical interpretation of the model impossible. To get rid of nonphysical

(2) In this section we use metric (−,+,+,+).

(3) Here κ−1 ≡ mPL = ( 1
8πG

)1/2 = 2.4 · 1018 GeV is the scale of quantum gravity.
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ghost states and improve ultraviolet properties of the theory it was proposed to deal
with nonlocal gravity [8]. The nonlocal gravity action has the form [8,22-28]

SSt[g] =

∫
d4x

1

16πG

√
−g[R+Rf1(−�cov)R+Rμνf2(−�cov)Rμν

+Rμναβf3(−�cov)Rμναβ ],(29)

Here �cov is the covariant d’Alembertian. Consider the simplest case f3 = 0, f2 = −2f1
where only spin 2 propagates. The graviton propagator has the form

(30) (k2)−1(P 2
μναβ − 1

2
P 0
μναβ) ·

(
1− 1

2
k2f2(k

2)

)−1

+ gauge-dependent terms.

We can choose the formfactor f2(k
2) in the form of the increasing function on k2 in the

Euclidean region, say f2(k
2) ∼ −(k2)n−1, n > 1. One can find that the theory with such

formfactor is superenormalizable [8, 22-28]. It is interesting to note that for the model
with nonlocal formfactor

(31) (1− 1

2
k2f2,nl(k

2))−1 = 2(k2l2)−n

[
1− sin((k2l2)n)

(k2l2)n

]

ultraviolet behaviour is determined by the ultraviolet behaviour of the model with local
formfactor f2,l(k

2) = −l2(k2l2)n−1 and the infrared behaviour of the graviton propaga-
tor (28) reproduces Einstein gravity. Probably especially interesting is the case n = 1 for
the formfactor (31) that corresponds to the renormalizable Stelle gravity [19] in the ul-
traviolet region and to the absence of the problems with indefinite metric due to nonlocal
propagator (31).

Careful discussion of the renormalization in nonlocal gravity model (29) is contained
in the brilliant review [26].

As was mentioned before in nonlocal QED the interaction between the charges could
be finite at r = 0. Absolutely the same situation takes place in nonlocal gravity. Classical
aspects of nonlocal gravity are discussed in review [29].

A very important question naturally arises: what about the scale of nonlocality Λ ≡
1
l ? It is clear that nonlocal scale Λ has to be smaller or equal to the Planck scale mPL

because in the opposite case we shall have the problems with tree level unitarity for
graviton amplitudes. The most natural assumption is that Λ ∼ O(mPL) but we cannot
exclude the case Λ 
 mPL. Current experimental data support Starobinsky R2 inflation
model [30]. There are attempts [31, 32] to use nonlocal gravity for the generalization
Starobinsky R2 model. It is interesting to mention that in Starobinsky model the free
parameter is the scalar mass M = 1.3 ·10−5mPL and the nonlocal scale Λ has to be much
larger than the scalar mass Λ [31, 32], namely Λ � M . So if we believe in Starobinsky
model we find that nonlocal scale Λ ≥ 1014 GeV.

6. – Nonlocal SU(5) GUT

The remarkable success of the supersymmetric SU(5) grand unified theory (GUT) [33-
50] was considered by many physicists as the first hint in favour of the existence of low
energy broken supersymmetry in Nature. However the nonobservation of supersymme-
try at the LHC is probably the opposite hint that the supersymmetry concept and in
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particular the supersymmetric SU(5) GUT is wrong. It is well known that the standard
SU(5) GUT [51, 52] is in conflict with experimental data [46, 47]. So a natural question
arises: is it possible to invent nonsupersymmetric generalizations of the standard SU(5)
GUT non contradicting to the experimental data? The answer is positive, in particular,
in the SO(10) GUT the introduction of the intermediate scale MI ∼ 1011 GeV allows
to obtain the Weinberg angle θw in agreement with experiment [53]. In refs. [54, 55] the
introduction of the additional split multiplets 5⊕ 5 and 10⊕ 10 in the SU(5) model has
been proposed. In ref. [56] the extension of the standard SU(5) GUT with light scalar
colour octets and electroweak triplets has been considered.

In this section we point out that in nonlocal generalization of Georgi-Glashow SU(5)
GUT it is possible to solve the problems with the proton lifetime and the Wein-
berg angle by the introduction of additional nonlocal terms to the SU(5) GUT La-
grangian [57]. Additional nonlocal terms lead to the modification of the GUT condition
α1(MGUT ) = α2(MGUT ) = α3(MGUT ) for the effective coupling constants. Nonlocal
scale Λ responsible for the ultraviolet cutoff coincides (up to some factor) with GUT
scale MGUT . In the simplest nonlocal modification of the standard renormalizable SU(5)
GUT the value of the GUT scale is MGUT ≈ 3 · 1016 GeV.

Let us start with the observation that in standard SUc(3) ⊗ SUL(2) ⊗ U(1) gauge
model the effective coupling constants α3(μ) and α2(μ) cross each other (α3(MGUT ) =
α2(MGUT )) at the scale MGUT ≈ O(1017 GeV). At one-loop level the effective coupling
constants αi(μ) obey the equations

(32) μ
dαi(μ)

dμ
=

bi
2π

α2
i (μ),

where for the SM model with 3 generations b3 = −7, b2 = −3 1
6 and b1 = 4.1. As a

consequence we find that

(33)
1

α2(mt)
− 1

α3(mt)
=

b2 − b3
2π

ln

(
MGUT

mt

)
.

Numerically MGUT = (0.9± 0.2) · 1017 GeV and 1
α3(MGUT ) = 46.9± 0.2(4).

The unification scale MGUT = (0.9 ± 0.2) · 1017 GeV is safe for the current proton
decay bound [58]. Really, in the standard SU(5) model the proton lifetime due to the
massive vector exchange is determined by the formula [59]

(34) Γ(p → e+πo)−1 = 4 · 1029±0.7

(
Mv

2 · 1014 GeV

)4

yr,

where Mv ≡ MGUT =
√

5
24g5Φ0 is the mass of vector bosons responsible for proton

decay(5). From the current experimental limit [58] Γ(p → e+πo)−1 ≥ 1.67 · 1034 yr we

(4) In our estimates we use α3(mZ) = 0.118 ± 0.001, sin2(θW )(mZ) = 0.231 ± 0.001 and
α−1
em(mZ) = 127.8± 0.1.

(5) Here Φ0 is the vacuum expectation value of the SU(5) scalar 24-plet 〈Φ〉 = Φ0√
15
Diag(1, 1, 1−

3/2,−3/2) responsible for SU(5) → SUc(3)⊗ SUL(2)⊗ U(1) gauge symmetry breaking and g5
is the SU(5) gauge coupling at the GUT scale MGUT .
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conclude that MGUT ≥ 2.5 · 1015 GeV. The main problem of the standard SU(5) GUT
with the unification scale MGUT ≈ 1017 GeV is that the experimental values of α3(mZ),
sin2(θW )(mZ), α−1

em(mZ) lead to non equal values of the effective coupling constants
α3(MGUT ) and α1(MGUT ), namely α−1

1 (MGUT ) = 36.0 �= α−1
3 (MGUT ) = 46.9.

Our main observation is that the use of nonrenormalizable interaction(6)

(35) ΔLFΦFΦ =
1

4Λ2
Φ1

(Tr(FμνΦ))(Tr(F
μνΦ))

leads to the additional term for the effective coupling constant α1(μ) at GUT scale,
namely

(36)
1

α1(MGUT )
=

1

α3(MGUT )
−Δ,

where

(37) Δ =
πΦ2

o

Λ2
Φ1

=
1

α3(MGUT )

6M2
v

5Λ2
Φ1

.

Numerically we find Δ = 10.9±0.2 and ΛΦ1 ≈ 2.3 ·Mv. So additional nonrenormalizable
interaction (35) can modify GUT unification condition in such a way that the GUT
unification scale MGUT ≈ 1017 GeV is nondangerous for proton decay bound and the
unification scale MGUT does not contradict to the experimental values of sin2(θW )(MZ)
and α−1(MZ). The appearance of additional arbitrary parameter Δ in the relation (36)
means that we cannot predict the value of sin2(θW ). Here the untrivial fact is that
the unifcation of α2(μ) and α3(μ) effective coupling constants takes place at the scale
MGUT = O(1017 GeV) which is safe for the proton lifetime bound. An account of two-
loop effects for the evolution of the effective couplings αk(μ) leads [44] to the replacement

(38)
1

αk(mZ)
→ 1

αk(mZ)
− θk,

where

(39) θk =
1

4π

3∑
j=1

bkj
bj

ln

[
αj(MGUT )

αj(mZ)

]
.

Here bij are the two-loop β-functions coefficients(7). An account of two-loop corrections
leads to the decrease of MGUT by a factor 3. The parameter Δ in (36) is not small.
Really, Δ/( 1

α2(MGUT ) ) ≈ 0.24 and ΛΦ1 ≈ 2.3 ·Mv. It means that at the scale MGUT we

(6) In refs. [60,61] the influence of nonrenormalizable interaction Lnl =
c

MPL
Tr(FμνΦF

μν) with

c = O(1) has been studied. It was realized that this interaction allows to increase the GUT
scale but cannot solve the problem with wrong Weinberg angle prediction.
(7) At two-loop level the renormalization group equations for αi(μ) effective coupling constants

are μ dαi
dμ

= bi
2π

α2
i +

∑j=3
j=1

bij
4π2α

2
iαj , see refs. [62, 63].
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must have some ultraviolet cutoff (regulator) to make sence to the nonrenormalizable in-
teraction (35) at quantum level. The most promising way to deal with nonrenormalizable
theories is the use of nonlocal field theory [2-5]. The simplest nonlocal generalization of
the renormalizable Yang-Mills Lagrangian has the form

(40) LYM,nl = − 1

2g25
Tr(FμνV (−ΔμΔ

μ)Fμν),

where Fμν = ΔμAν −ΔνAμ, Δμ = ∂μ − iAμ, Aμ = Aa
μTa(

8) and the formfactor V (x) is

an entire function on x. The use of nonlocal formfactor V (p2) with increasing behaviour
in the Euclidean region at p2 → −∞, for instance V (p2) = exp(−p2/Λ2

Φ1) makes the
Yang-Mills model superrenormalizable. A possible nonlocal generalization of nonrenor-
malizable interaction (35) is

(41) ΔLFΦFΦ,nl = − 1

4Λ2
Φ1

(Tr(FμνΦ)VΦ1(−∂μ∂μ)(Tr(F
μνΦ))

with VΦ1(p
2) ∼ exp(p2/Λ2

Φ1) The use of nonlocal formfactors V and VΦ1 cures bad ultra-
violet properties of nonrenormalizable interaction (35) and make it superrenormalizable.
For nonlocal Lagragian (41) the parameter Δ in formula (36) depends on the scale μ

(42) Δ(μ) =
πΦ2

o

Λ2
Φ1

VΦ1(−μ2).

We can use the normalization condition VΦ1(−M2
GUT ) = 1. In this case formula (37) and

numerical estimate for Δ are valid.

7. – Conclusions

1) The use of nonlocal field theory for gravity can cure bad ultraviolet properties of
the theory and make quantum gravity superrenormalizable and unitary theory.

2) The use of nonlocal field theory allows to make γ5-anomalous models meaningful.

3) There are ultraviolet finite field theory models with infinite number of local fields
with local interactions. An account of infinite number of local fields leads to ultra-
violet finite nonlocal field theory.

4) Nonlocal generalization of Georgi-Glashow SU(5) GUT allows to overcome the
problems with fast proton decay and wrong Weinberg angle prediction. The price
of such modification is the absence of predictive power for Weinberg angle θW . For
nonlocal SU(5) GUT the nonlocal scale is Λ = MGUT ≈ 3 · 1016 GeV.

∗ ∗ ∗
I am indebted to Dr. Luca Buoninfante for an invitation to participate in this won-

derful conference.

(8) Here Ta are the SU(5) matrices with Tr(TaTb) =
1
2
δab and g5 is the SU(5) gauge coupling

constant.



SEVERAL ASPECTS OF NONLOCAL FIELD THEORY AND GRAVITY 11

REFERENCES

[1] Pauli W. and Willars F., Rev. Mod. Phys., 21 (1949) 434.
[2] Efimov G. V., Commun. Math. Phys., 5 (1967) 42; 7 (1967) 138.
[3] Efimov G. V., Nucl. Phys., 74 (1965) 657.
[4] Efimov G. V., Ann. Phys., 71 (1972) 466.
[5] Efimov G. V., Nonlocal Interactions (in Russian) (Nauka, Moscow) 1977.
[6] Krasnikov N. V., Phys. Lett. B, 195 (1987) 377.
[7] Krasnikov N. V., Mod. Phys. Lett. A, 2 (1987) 761.
[8] Krasnikov N. V., Theor. Math. Phys., 73 (1987) 1184.
[9] Slavnov A. A., Theor. Math. Phys., 13 (1972) 174.

[10] Slavnov A. A., Theor. Math. Phys., 33 (1977) 210.
[11] Adler S., Phys. Rev., 177 (1969) 2426.
[12] Bell J. and Jackiw R., Nuovo Cimento A, 60 (1969) 47.
[13] Krasnikov N. V., JETP Lett., 41 (1985) 586.
[14] Krasnikov N. V., Nuovo Cimento A, 89 (1985) 308.
[15] Krasnikov N. V., Nuovo Cimento A, 95 (1986) 325.
[16] Krasnikov N. V., Sov. J. Nucl. Phys., 45 (1987) 184.
[17] ‘t Hooft G. and Veltman M. J., Ann. Inst. H. Poincaré Phys. Theor. A, 20 (1974) 69.
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