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Summary.— Depending on the energy regime, the dynamics of heavy-ion collisions
reveals a variety of different mechanisms which are attributed to the combination of
collective and dissipative effects. Semi-classical approaches have been successful in
describing chaotic regimes at Fermi-energies but they gradually lose precision when
extending to collective behaviour and in general when low-energy features become
more determinant in the dynamics. To improve on this description, we propose a
theoretical approach starting from the TDHF scheme. A quantum representation
with a moving basis function has been worked out with a double aim. Firstly,
achieving a simplified solution to handle the evolution in time. Secondly, introducing
beyond-mean-field extensions and stochastic contributions. Applications to nuclear
collisions at incident energies around low to Fermi energy are presented.

1. – Introduction

In heavy-ion collisions there is a wide range of phenomena that is explored depending
on various conditions of incident energy, isospin asymmetry, impact parameters and
other properties. Schematically, the mechanisms could be distinguished into at least
three relevant energy regimes. First, the low energies up to around 15MeV per nucleon,
where two-body nucleon-nucleon collisions are suppressed due to Pauli blocking in the
final states. Therefore, the physics is dictated by the long-range collective effects of
the mean-field potential. Next from several tens to hundreds of MeV, at the so-called
Fermi to intermediate energies, the two-body nucleonic interactions have to be included
in addition to the collective behaviour. Lastly, the participant-spectator regime at high
to relativistic energies, where the short-ranged two-body interaction dominates over the
mean-field contribution. For each of those energy ranges, there are different dedicated
models that are well-adapted to the situation at hand. The low energy mechanisms
are for example efficiently described within the time-dependent Hartree-Fock (TDHF)
framework, whereas the large-amplitude fluctuations at Fermi energies are described in
stochastic mean-field approaches (Boltzmann-Langevin equation) [1-3] or in molecular
dynamic models [4-6].
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However, a challenge for nuclear many-body theories is to properly address the com-
peting types of instabilities at the threshold between Fermi and low energies within
a unified picture. At the state-of-the-art, models at Fermi energies tend to lack the
mean-field phenomenology to some extent, from isospin drifts to collective modes, and,
conversely, models approaching low energy miss large-amplitude fluctuation and lack
mechanisms where profound transformation, or even splits, occur in the system. Ulti-
mately, a theoretical approach able to cover the transition from Fermi to low energies
in one single comprehensive descriptionwould be a well suited framework to study the
evolution of fragments and clusters as a function of time and density.

In the following, we are adapting a stochastic TDHF formulation (previous formu-
lations we progress from are [7, 8]) by starting from the many-body Schroedinger equa-
tion, since this is the underlying physics which determines the collective behaviour of
any quantum system at these energies. The fundamental point of this approach is the
decomposition of the non-local nucleonic wave functions into a set of moving basis func-
tions. As a consequence, the mean-field properties are preserved, since the nucleonic
wave function is not constrained to be localised and furthermore the system is prepared
into a set of moving basis functions in order to follow a similar scheme as in the analogous
semi-classical Boltzmann-Langevin approach.

2. – Model

The motivation of this model is to describe the mechanisms of the Fermi to low
energy. Hence, it is important to keep a good description of the mean-field to account
for the collective behaviour, while preparing the system for a stochastic collision term
as well. The mean-field will be given by the one-body density matrix, or equivalently
the one-body nucleonic wave functions, which will be determined from a self-consistent
TDHF method using a Skyrme-type potential. The crucial difference of this model is the
decomposition of the nucleonic wave functions |ϕi〉 into a set of moving Gaussian bases
|gj〉 with varying widths in momentum and configuration space,

|ϕi〉 =
∑
j

cij |gj〉 and ρ =
∑
i

|ϕi〉〈ϕi|,(1)

where
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The parameters are position xj , momentum kj , configuration width χj and the width
correlation parameter σj , ensuring Heisenberg’s uncertainty principle. It is instructive
to mention that in the limit where the decomposition in eq. (1) is restricted to only one
Gaussian, the nucleonic wave function is constrained to a localised, parametrised Gaus-
sian wave packet as it is the case in molecular dynamics. By including more Gaussians
into the decomposition, the accuracy to represent the non-localised Hartree-Fock wave
function is steadily increased, which in turn improves the mean-field description.

Furthermore, it should be noted that the coefficients cij of the decomposition are
not only positive but also negative, contrary to semi-classical Boltzmann models with
test-particles, which have all-equal and positive weights. In the present development, the
coefficients fit the wave function, at variance with a semi-classical approach, where the
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Fig. 1. – Decomposition of a harmonic oscillator state (solid black) into a superposition of three
Gaussian base function (dashed blue).

coefficients would rather fit the phase-space density. By Wigner-transformation, it would
be possible to interpret the square of the coefficients to a phase-space weight. This is
illustrated in fig. 1, where an initial harmonic oscillator state is decomposed into a sum of
three Gaussian basis functions. The central Gaussian needs to have a negative coefficient
since the original wave function has a negative extremum.

In this setup, the framework therefore allows handling not only a moving set of func-
tions as in semi-classical mean-field approaches, but also correcting the treatment of
the Pauli blocking. That comes from the fact that the wave functions are not Wigner-
transformed, which is why the coefficients in the decomposition will take both positive
and negative values. Hence, the Pauli principle can still be checked on the basis of the
scalar product rather than the phase-space occupancy. The overlap of two nucleonic
wave functions consists therefore of constructive contributions from Gaussians of equal
sign but also destructive interferences from Gaussians of opposite sign.

Using the description of the one-body density ρ in eq. (1) we derive the evolution
equation both for a cooling procedure which follows the gradient of the Hamiltonian and
for the mean-field propagation by applying the Euler-Lagrange equations. The cooling
procedure acts after the change of bases from the Hartree-Fock states to the Gaussian
representation. This helps to find the suited ground state for the Gaussians as it is done
in molecular dynamics. Afterwards, the time evolution of the system is fully determined
by the equation of motion derived from the Euler-Lagrange equations.

On top of the mean-field evolution, a description of the collision term in the spirit
of the Boltzmann-Langevin One-Body (BLOB) model [9, 10] is adopted in order to take
into account large-density fluctuations:

i�
∂ρ

∂t
− [h, ρ] = IUU + δIUU(2)

= g

∫
d3p

h3

∫
W (AB ↔ CD)F (AB → CD)dΩ,
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Fig. 2. – Snapshots at different times (t = 0, 40, 80, 110, 150, 200 and 250 fm/c) during a
peripheral collision of the isospin asymmetric 40Ca+ 48Ca collision at 35AMeV with an impact
parameter b = 9 fm. The red colour indicates the proton distribution and the blue colour
indicates the neutron distribution.

where h is the mean-field Hamiltonian, IUU the average Uehling-Uhlenberg collision term
and δIUU its fluctuating part. In the BLOB approach, both terms are combined into
a nucleonic collision term where nucleonic degrees of freedom are exploited through a
stochastic seed to induce fluctuations in a scheme analogous to the Brownian motion.

In a nucleon-nucleon collision event, the involved nucleonic wave functions are col-
lapsed to a representative Gaussian wave function. The final scattered nucleonic wave
packets are then adapted to the final state in such a way that Pauli blocking is not
violated.

3. – Discussion

In order to test the model, we focus first on the stability of the approach and, later
on, we extend to the collision term. As a first example, we chose the asymmetric system
40Ca + 48Ca at 35AMeV (see a recent experimental campaign [11]) and select peripheral
collisions with an impact parameter b = 9 fm. Under these conditions, we ensure that the
collision is well controlled by the mean-field evolution with little to no nucleon-nucleon
collisions. In fig. 2 this collision is displayed in a contour plot viewed from the side at
various times during the collision evolution. At t = 0 fm/c, 40Ca and 48Ca are impinging
from the left and the right, respectively. Proton (red) and neutron (blue) density contour
plots correspond to initially isometric distributions within the nuclei. As the nuclei start
to overlap at 40 fm/c, the mean-field effects start to visibly show at 80 fm/c and 110 fm/c.
Due to a combination of Coulomb repulsion acting on protons and neutron diffusion effect
from the neutron-rich towards the neutron-poor nuclei, we observe in both snapshots at
80 fm/c and 110 fm/c a pull of the neutron distribution of the 48Ca in the direction of the
neck between both nuclei. At the later stages of the evolution, the neck has disappeared.
However, we can clearly see that the initial drift of the neutron distribution during the
contact phase of the collision has induced a dipolar resonance of Pigmy type into the
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Fig. 3. – Snapshots at different times (t = 0, 10, 20, 30, 40 and 50 fm/c) during a central 36Ar
+ 58Ni collision at 50AMeV with an impact parameter b = 0 fm in momentum space.

neutron-rich nuclear partner. The neutron distribution at 200 fm/c is shifted on the right-
side of the neutron-rich nucleus (travelling to the left) whereas at 250 fm/c the neutron
distribution has moved to the left side. Conversely, we do not see such a pronounced
effect in the 40Ca quasi-nuclei. Consequently, we can deduce that the Coulomb repulsion
has less impact than the neutron diffusion [12] caused by the initial isospin asymmetry
during the overlapping phase.

Furthermore, another feature worth pointing out is the stability of the final states.
In semi-classical transport approaches, the final states do not stay compact over a large
amount of time. The reason is that the inherent evolution equation is a Boltzmann
equation which leads to a Boltzmann distribution over time. Hence, the distribution
tends to smear out as the dynamics goes on. In our case, the final states are very well
defined and are not spreading out, which is a direct consequence of the TDHF evolution
equations.

As a second example, we choose a very dissipative system to test the action of the
BLOB-like collision term. We consider therefore the central 36Ar + 58Ni collision (see
experimental campaign [13]) at 50AMeV with an impact parameter b = 0 fm. In fig. 3 the
evolution of the Gaussian centroids is displayed in momentum space. In the approaching
stages from 0 fm/c to 20 fm/c the structural composition of both nuclei remains intact,
since there are no internal collisions due to Pauli blocking. As the two nuclei enter their
contact phase, progressing from 30 fm/c to 50 fm/c, some portions of the system with the
size of a nucleon are pushed outside the Fermi spheres of the respective colliding nuclei.
Seemingly to the BLOB approach, each of those portions has been defined by selecting
a set of Gaussians which represent a nucleon at the time of a nucleon-nucleon collision.
The choice of such sets requires an iterative procedure based on the scalar product
and allows building up the nucleonic degrees of freedom. Thus, the scalar product is
the equivalent to the phase-space metric in the Boltzmann approaches. On the basis of
mean-free-path conditions and the in-medium nucleon-nucleon cross section, the collision
can be attempted and further checked for also fulfilling the Pauli principle.
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4. – Conclusions

In this proceeding, we presented a new framework which keeps the detail of a quan-
tum mean-field TDHF description, but additionally establishes a foundation to include
beyond mean-field extensions of large-amplitude fluctuations. This is achieved by decom-
posing the nucleonic Hartree-Fock wave function into a set of time-dependent, Gaussian
basis functions. We showed the decomposition into Gaussians and the importance of real
valued coefficients in order to ensure orthogonality by having both constructive as well
as destructive contributions to the overlap between two nucleonic wave packets. The
stability of the mean-field evolution has been tested on a peripheral, isospin asymmetric
collision, displaying a Pygmy dipolar resonance in the neutron-rich final state. Further-
more, we tested a BLOB-like collision term on a very dissipative mechanism. However,
the advantage of our framework compared to the stochastic semi-classical transport ap-
proach is that multi-particle correlations are naturally introduced by construction, since
a set of Gaussians is tracked for each nucleonic wave packet. Hence, this new approach
should avoid the arbitrariness of introducing nucleonic degrees of freedom from phase-
space arguments.
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