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Summary. — This article is an introduction for non-specialist readers to hydrody-
namic spin lattices, collections of macroscopic wave-propelled particles that exhibit
symmetry-breaking phenomena. Hydrodynamic spin lattices have been introduced
and thoroughly investigated with both experiments and theoretical models by Sáenz
et al. (Nature, 596 (2021) 58). Here I summarize the main results obtained in ex-
periments with one-dimensional lattices and describe the simplest theoretical model,
i.e., the generalized Kuramoto model, that captures the experimental data. The
results presented here include transitions from antiferromagnetic to ferromagnetic
order obtained by varying lattice geometry and system rotation, which is equiva-
lent to applying a magnetic field. Finally, hydrodynamic spin lattices are briefly
discussed in the context of active systems.

1. – Introduction

The coalescence of a liquid droplet with an underlying bath of the same liquid may
be inhibited by forcing the bath to vibrate vertically [1]. The bath vibration sustains
the drop to bounce on the bath’s surface for a virtually infinite time with the interme-
diate of a thin air layer [2, 3]. In some regimes, the drop moves horizontally across the
surface by bouncing on the slope of the waves emitted by previous bounces [4-8] (fig. 1).
The ensemble of drop and waves has been baptized a walker, which is a wave-particle
association at the macroscopic scale [5]. Many configurations of the walker system have
been explored to assess its potential and limitations as an analog of microscopic systems.
These include interactions with slits [9-12], walls [13-16], cavities [17-20], bath bottom
topography [13, 18, 21-23], and external forces [24-27]. Walkers exhibit several analogs
with microscopic systems to various degrees of success [28], including quantization of
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Fig. 1. – The behavior of a walking droplet confined by a submerged circular well. (a) Schematic
cross section. (b) Snapshot with h � 1mm. (c) Snapshot with h = 1mm. Particle trajectories
are indicated by red dashed lines and well boundaries in white. Figure from [21].

orbits [24,25,29] and angular momentum [26,30-32] in the presence of central forces, sta-
tistical switching between levels [25,27], level splitting [33], Hong-Ou-Mandel effect [34],
spin states [35], wavelike particle statistics [17,36,37] and statistical projection effects [18]
in corrals, and Friedel oscillations [22]. Collections of bouncing droplets exhibit features
similar to crystal vibrations [38-41].

Collections of walkers are substantially more difficult to manipulate since walkers
tend to coalesce with each other or with the bath or form bound states [42-48]. Until
recently, the collective behavior of walkers (rather than bouncers) was investigated with
limited configurations and particle numbers, specifically for exploring orbiting [4,43,46],
promenading [45, 47], ratcheting [42, 49] and speed enhancement in walker strings [50].
The dynamics of walker pairs confined to a line has been shown to give rise to long-range
correlations [51] and most recently to a hydrodynamic analog of superradiance [52].
Sáenz et al. [21, 23] developed the first experimental design that enables the study of
large collections of walkers coupled through the waves they emit, opening the door to
the study of the collective motion of wave-driven particles.

2. – Experimental setup

Sáenz et al. tuned the bottom topography of the liquid bath to keep droplets separated
whilst maintaining their wave-mediated interactions [20, 21]. A submerged circular well
may force a droplet to walk on a circular trajectory and thus ‘spin’ within the well
(fig. 1). The extent of the walker wave field changes with the depth h of the liquid
layer surrounding the well: small depth (h � 1mm) results in strongly confined waves
(fig. 1(b)) while a larger depth (h ≈ 1mm) allows the waves to escape the well over a
few wavelengths (fig. 1(c)).

Hydrodynamic spin lattices are made of multiple walking droplets, each confined by a
submerged circular well to ‘spin’ on the bath surface and interacting with the neighbors
via the waves it emits (fig. 2(a), (b)). The liquid used was silicone oil with density ρ =
950 kg m−3, viscosity ν = 20.9 cSt, and surface tension σ = 20.6mN m−1. The well depth
was H = 6.2mm, which corresponds to “infinite” depth with respect to the characteristic
wavelength of the system. The bath was forced by an electromagnetic shaker to oscillate
vertically with acceleration Γ(t) = γ cos 2πft, where γ < γF is the acceleration amplitude,
with γF the Faraday instability threshold [53,54], f is the frequency, and t is time. Drops
had a diameter Dd = 0.75±0.01mm and bounced in phase at half the forcing frequency.
Therefore, they were local triggers of the Faraday instability and excited approximately
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Fig. 2. – 1D lattice and wave-mediated interactions. (a) Oblique view of a ring of submerged
circular wells with walking droplets. The fluid layer between wells allows for wave-mediated
interaction between neighboring drops. (b) Schematic cross section of two interacting drops. (c)
Schematic representation of the model of two interacting drops. Material from [23].

standing circular waves with wavelength λF . Droplets were tracked with an in-house
algorithm that served to measure the spin S(t) = Lz(t)/m of each droplet, where m is
the droplet’s mass, and Lz is the angular momentum with respect to the well center.
Experiments were started with random initial spin configurations and run for several
hours to achieve statistical significance. The bath was enclosed inside a transparent
chamber to ensure isolation from ambient air currents.

3. – Generalized Kuramoto model

Starting from first principles, Sáenz et al. demonstrated that the simplest model
capable of describing the collective behavior in hydrodynamic spin lattices is a phase
oscillator model [23] (fig. 2(c)). Walker trajectories are assumed to be circular xi(t) =
r0(cosφi(t), sinφi(t)), where (r0, φi) are the cylindrical coordinates describing the posi-
tion of droplet i with respect to the center of the well in which it walks, and ωi = φ̇i is
the angular frequency of rotation of the droplet. Since walking droplets have a preferred
walking speed [5,7], which we denote with v0, preferred orbital frequencies are defined as
±ω0 = ±v0/r0. The presence of a preferred orbital frequency is modeled by a non-linear
Rayleigh-type friction, leading to the following equation:

(1) ω̇i =
1

τ

(
1− ω2

i

ω2
0

)
ωi +

∑
j

Fij(φi, φj),

where Fij is the wave-mediated force exerted on drop i by its nearest neighbor j, and τ
is the timescale over which perturbations to ω0 decay. Assuming weak accelerations and
small orbital radii r0 � L in the droplet motion, the interaction force can be derived
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from a coupling potential

Fij(φi, φj) = − ∂U

∂φi
,(2a)

U(φi, φj) =
1

2
α(cosφi − cosφj)

2 +
1

2
β(sinφi − sinφj)

2.(2b)

Here α ∝ J ′′
0 (kFL) and β ∝ J ′

0(kFL), where J0(kF (|x − xj |)) is a Bessel function of
the first kind centered at the position of the neighboring drop that approximates the
coupling wave field, and kF = 2π/λF .

4. – Order parameters

Collective order was characterized by measuring three parameters. The normalized
“magnetization”

(3) M(t) =

∑
i Si(t)∑
i |Si(t)|

quantifies the global symmetry breaking, with
∑

i indicating a sum over all N spins and
Si(t) the spin of droplet i. The normalized spin-spin correlation

(4) χ(t) =

∑
i∼j Si(t)Sj(t)∑
i∼j |Si(t)Sj(t)|

quantifies pairwise symmetry breaking, with i ∼ j indicating that the sum is done over
adjacent pairs. Negative χ corresponds to average counter-rotation of adjacent walk-
ers (antiferromagnetic behavior), while positive χ corresponds to average co-rotation of
adjacent walkers (ferromagnetic behavior). The third order parameter characterized by
Sáenz et al. [23] is the average phase difference of rotation of adjacent walkers, which will
not be discussed here.

5. – Collective behavior as a function of forcing

In the first series of experiments, the lattice spacing L was fixed and the dependence
of the collective behavior on the forcing acceleration γ/γF was explored (fig. 3). γ/γF
is somewhat a tuning parameter for the extension of the walker wave field since higher
forcing results in waves lasting for a longer time on the bath’s surface [6]. In our exper-
iments, the average magnetization was observed to vanish, 〈M〉 ≈ 0, while the average
spin-spin correlation 〈χ〉 exhibited a monotonic dependence on the forcing acceleration.
Specifically, 〈χ〉 ≈ 0 at low γ/γF due to limited extensions of the wave field and thus
the lack of wave-mediated interactions. The spin-spin correlation decreased with the
forcing, as a result of increasing wave-mediated interactions, and reached a minimum
value roughly corresponding to the maximum amplitude at which an isolated spinning
drop would have a stable circular trajectory. Further increasing of γ/γF corresponds
to increasing 〈χ〉 back to zero, presumably because the strong wave-mediated interac-
tions ‘randomize’ the collective behavior. The generalized Kuramoto model captures the
observed behavior well despite the significant approximations (fig. 3).
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Fig. 3. – Dependence of the average spin-spin correlation 〈χ〉 on the forcing acceleration am-
plitude γ/γF in experiments and as predicted by the Generalized Kuramoto model for a 1D
lattice. Experimental parameters: N = 20 wells, L = 17.7mm, D = 14mm, h = 1mm,
f = 80Hz, λF = 4.75mm and γF = 4.780 g. Material from [23].

6. – Collective behavior as a function of spacing

Sáenz et al. [23] then proceeded to explore the dependence of the spin-spin correlation
on the lattice spacing L. Experimentally, two lattice spacings were explored, leading to

Fig. 4. – Antiferromagnetic and ferromagnetic order of 1D lattices. (a) Time evolution of spin-
spin correlation χ and magnetization M of a 1D spin lattice with N = 20 wells, L = 17.7mm,
D = 14mm, H = 1mm, f = 80Hz, λF = 4.75mm and γ/γF = 82% with γF = 4.780 g.
(b) Snapshot of the collective antiferromagnetic order as it appeared at instant tA in (a), where
χA is the corresponding spin-spin correlation. (c) Time evolution of spin-spin correlation χ and
magnetizationM of a 1D spin lattice withN = 28 wells, L = 13.2mm, D = 10mm, H = 0.8mm,
f = 78Hz, λF = 4.84mm and γ/γF = 86% with γF = 5.280 g. (d) Snapshot of the collective
ferromagnetic order as it appeared at instant tB in (c), where χB is the corresponding spin-spin
correlation. Material from [23].
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either antiferromagnetic (fig. 4(a),(b)) or ferromagnetic (fig. 4(c),(d)) order. This behav-
ior is captured by the generalized Kuramoto model, which also shows that continuous
transitions from antiferromagnetic to ferromagnetic order and vice versa can be obtained
by varying L. The model also provides a simple theoretical framework: antiferromagnetic
or ferromagnetic pairwise modes are selected by minimizing the potential U in eq. (2)
(see Methods in Sáenz et al. [23] for the underlying mechanism).

7. – Applying the equivalent of a magnetic field

Finally, Sáenz et al. proceeded to apply the equivalent of a magnetic field [23]. It
is known that an antiferromagnetic material can become ferromagnetic if a constant
magnetic field is applied. To apply an equivalent of the magnetic field they used the
analogy between the Lorentz force FB = q(v × B) acting on a charge q that moves
with velocity v and the Coriolis force FΩ = m(v × 2Ω) acting on a mass m that moves
with velocity v in a frame that rotates with constant angular velocity Ω [24]. A lattice
with initial antiferromagnetic order was rotated anticlockwise, and a polarization to
ferromagnetic order was observed (fig. 5(a)). Correspondingly, the magnetization moved
from zero to a positive value. When the direction of rotation was inverted, the lattice
remained ferromagnetic, but the magnetization changed to negative (fig. 5(a), (b)). Spins
generally aligned with the “magnetic” field, that is, the bath angular velocity vector. The
mechanism underlying this “magnetization” lies in the capacity of the Coriolis force to
destabilize circular trajectories. A bath co-rotating with a drop gave rise to a Coriolis
force that opposed the confining force of the well, thus preserving the circular trajectory
and increasing its radius. A bath counter-rotating with a drop gave rise to a Coriolis
force that pointed inwards and destabilized circular orbits into trefoil-like trajectories,
through which the direction of rotation of the drop could be easily reversed by the
perturbations from neighboring drops. The experimental results are captured by the

Fig. 5. – Effect of applying an equivalent magnetic field via system rotation. (a) Time evolution
of spin-spin correlation χ and magnetization M initially without rotation, (Ω = 0) and then with
anticlockwise (Ω = 0.7 rad s−1) and clockwise (Ω = −0.7 rad s−1) rotation. (b) Configurations
at instants tA, tB and tC in (a). (c) Average spin-spin correlation as a function of the system
angular speed in experiments and as it results from the Generalized Kuramoto model with
rotation. Experimental parameters are the same as in fig. 3 with γ/γF ≈ 85%. Material
from [23].
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generalized Kuramoto model in eq. (1) by adding the Coriolis force (fig. 5(c)). The
polarization to ferromagnetic order occurred at a supercritical rotation rate ΩC in both
experiments and theoretical modeling.

8. – Conclusion and perspective work

In this communication, I have summarized the results obtained by Sáenz et al. on 1D
hydrodynamic spin lattices, which are lattices of drops propelled by waves on the surface
of a liquid [23]. Sáenz et al. also explored the behavior of 2D square and triangular
lattices. Specifically, they observed a transition from antiferromagnetic to ferromagnetic
order and global magnetization with bath rotation in square lattices. They also found
ferromagnetic domains in 2D square lattices by varying the lattice spacing in simulations.
The effect of the bouncing phase of the drops was investigated, and it was found that
lattices with all drops bouncing in phase maximize |〈χ〉|. Details of spin flips were
also reported. All these results demonstrate the plethora of configurations that can be
designed and explored with spin lattices of walking drops, which may lead, for instance,
to the hydrodynamic analog of spin-wave dynamics [55] and Anderson localization [56].

It is worth mentioning the potential impact of hydrodynamic spin lattices on the
statistical physics of active systems. Active systems are composed of self-driven units
capable of consuming energy to move or exert forces on each other [57, 58]. These sys-
tems have recently attracted the attention of physicists for the possibility of extending
the framework of statistical physics to incorporate non-equilibrium phenomena. Ex-
tensive studies have been devoted to overdamped active systems (see for instance [58])
in which interactions are mediated by viscous hydrodynamic forces that decay mono-
tonically with distance, and inertial active systems (see for example [59]), which exhibit
spatiotemporally complex interactions and are relatively less understood. Hydrodynamic
spin lattices are a rare example of an active system in which both dissipation and iner-
tia are at play and thus promise a number of novel collective behaviors, some of which
have been anticipated in recent reviews [60,61]. Furthermore, and maybe more interest-
ingly, hydrodynamic spin lattices are the first example of an active system with wave-
mediated interactions, in which interaction forces are long-range and spatially-oscillatory,
i.e., defined by alternating regions of attraction and repulsion. Recent experiments on
wave-propelled solid particles on a fluid interface show that wave-mediated interactions
lead to the multistability of a discrete set of interactions states [62], which contribute to
increasing the number of collective behaviors that can be studied in these systems.
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the theoretical modeling. Sam E. Turton and Rodolfo R. Rosales contributed to the
theoretical modeling. Giuseppe Pucci contributed to the conception and execution of
the preliminary experiments. Alexis Goujon contributed to the preliminary experiments.
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are coming in the future since this system continues to show its potential and unveil
mysteries.
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[21] Sáenz P. J., Pucci G., Goujon A., Cristea-Platon T., Dunkel J. and Bush J.

W. M., Phys. Rev. Fluids, 3 (2018) 100508.
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