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Summary. — It was recently discovered that quasicrystalline systems may provide
a platform for the realisation of higher order topological insulators, where the topo-
logical phase is protected by spatial symmetries. In this paper I focus on a specific
model and study the robustness of its topological phase against perturbations of the
protecting symmetry. This is done both by varying the shape of the sample and by
deforming the lattice. While signatures of the higher order topological phase can
persist, the effects of an even slight symmetry breaking are significant.

1. – Introduction

The quest for new playgrounds for electronics, spintronics, and quantum computa-
tion led, around twenty years ago, to a remarkable change of paradigm in condensed
matter physics [1-21]. The usual classification of crystalline materials in conductors and
insulators has been surpassed with the discovery of topological insulators, a special class
of materials in which an insulating bulk coexists with metallic states that live at the
system’s boundaries [1]. The edge states found in topological insulators are protected
against elastic backscattering and this protection is often provided by a symmetry of the
system (typically time-reversal [2,3]). Moreover, the topological phase, and consequently
the associated edge states, will not disappear if the system parameters are modified by
some perturbation, unless it is strong enough to cause gap closing [1].

In topological insulators, the metallic edge states are confined in one spatial dimen-
sion less than the hosting system. This link between a non-trivial topology of the d-
dimensional bulk bands and the presence of boundary states of dimension d− 1 is called
bulk-boundary correspondence.

In recent years, it has been discovered that this correspondence might have exceptions.
Different topological crystalline phases can occur in which the boundary states live in a
dimension lower than d − 1. Systems that manifest this particular signature are called
Higher Order Topological Insulators (HOTI) [22,23].
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Together with the development of HOTIs, a new material was recently synthesised:
the twisted bilayer graphene [24]. When the rotation angle between the two sheets is set
to thirty degrees, [25] the structure becomes a graphene-based quasicrystal (GQ), hence
lacking discrete translational invariance. However, the material possesses long range
order in the form of a 12-fold rotational symmetry (C12). The GQ is of great interest
in the field of HOTIs: indeed, being a quasicrystal, it presents rotational symmetries
not achievable by crystalline materials and so it can give birth to a HOTI phase not
observable in the latter [26, 27].

A remarkable GQ-based HOTI model is the one proposed by Stephen Spurrier and
Nigel R. Cooper in [27]. This model realises a Second Order Topological Insulator (SOTI)
phase, meaning that the bulk gap is two-dimensional while the topological modes are
zero-dimensional (0D). The symmetry protecting the SOTI phase is the C12 rotational
symmetry. While the bulk necessarily has this symmetry, in finite size samples the
geometry of the boundary needs to be chosen carefully in order to have the C12 as a
global symmetry and hence being sure to observe the HOTI phase. If this is done, the
SOTI phase is characterised by the presence of in-gap degenerate eigenvalues associated
to 0D states localised on the vertices of the sample (corner modes).

In this paper, taking the model proposed by S. Spurrier and N. Cooper as a platform,
I study the robustness of the SOTI phase with respect to geometrical disorder. Through
a numerical tight-binding approach, the effect of two kinds of geometrical perturbations
will be analysed: the first one consists in a variation of the rotation angle between the two
superimposed hexagonal lattices (and so amounts to a deformation of the full lattice);
the second in choosing a sample shape not compatible with the C12 symmetry.

It will be shown that, in both cases, the rotational symmetry breaking causes a
degeneracy lifting in the spectrum signature of the SOTI phase. Moreover, it will be
demonstrated that the edges play a crucial role in the realisation of the SOTI phase.

The article is structured as follows. In sect. 2, I will describe the SOTI model and the
perturbations that will be subsequently inspected. In sect. 3, the results are presented.
In sect. 4, the interpretation is given. Finally, in sect. 5, a conclusive discussion is
presented.

2. – Model

The HOTI model under inspection consists of two layers —t, b for top and bottom
respectively— of graphene lattice. Such system is populated by spinless electrons, whose

creation operators on the i-th lattice site of the layer t/b are c
†,t/b
i . The fermions undergo

in-plane nearest neighbours hopping with amplitude t, and next to nearest neighbour hop-
ping with complex amplitude iνij given by the usual Haldane coupling [28]. Moreover, a
distance-dependent inter-layer hopping is present, parametrised by t⊥ij . More specifically,
I set the interlayer coupling tij as exponentially decreasing with the distance between
the sites on the two layers with the explicit form

(1) t⊥ij = t⊥ exp

(
−|�dij | − d0

δ

)
,

where �dij is the vector that connects the i and j sites on the two planes; δ = 0.184a is
the decay length of the transfer integral (expressed in units of the in-plane next-nearest
neighbour distance a); d0 is the interlayer distance and t⊥ is a coupling coefficient. The
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two layers are twisted with respect to each other by a 30 degree angle. The tight-binding
Hamiltonian then reads [27]

(2) H = t
∑
〈ij〉

c†i τ0cj + λH

∑
〈〈ij〉〉

iνijc
†
i τzcj + λ⊥

∑
ij

t⊥ijc
†
i τxcj .

Here 〈ij〉 and 〈〈ij〉〉 denote the pairs of intralayer nearest and next-nearest neighbour
sites respectively, while the Pauli matrices τi act in the space of layer isospin, where
the ci = (cti, c

b
i )

T operator is defined. In other words, the Hamiltonian consists of two
Haldane models [28] with opposite Chern number —which is nothing more than the
Kane-Mele model [2] with the spin replaced by layer isospin— and with a 30 degrees
twist coupled together by a term of interlayer hopping.

The results described throughout this article have been obtained by adopting a numer-
ical tight-binding approach. The pybinding package has been used for the construction
and diagonalisation of the system Hamiltonian [29]. Moreover, the following parameters
have been adopted: λH = 0.3t(1) and t⊥ = −0.178t. The t⊥ coefficient is chosen so
that if the auxiliary parameter λ⊥ is set to one, then the interlayer coupling intensity
matches what is experimentally observed for real TBG samples, as reported for example
in [30]. The λ⊥ coefficient is redundant, and is added only to have a means for tuning the
interlayer interaction intensity in units of the real system coupling t⊥: indeed, for limited
sample sizes, it may be necessary for the gap to open (and so host the corner states)
to increase λ⊥ above the unity value. To avoid unnecessary computational complex-
ity, the interlayer coupling has been limited to sites whose relative distance |�d| satisfies
|�d| − d0 < 2acc, with acc the in-plane nearest neighbour distance. As a matter of fact,
over this distance the interlayer coupling can be safely neglected. In what follows, the
nearest neighbour distance is set as in graphene (acc = 0.142 nm) and the system sizes
are reported in SI units instead of units of this distance, for easier confrontation with
experimentally achievable samples.

For λ⊥ = 0, and taking a finite sample, one finds counter-propagating metallic modes
localised on the edges of the two planes —as in [2], but with spin replaced by layer isospin.
The role of the interlayer hopping term is to gap out the counter-propagating metallic
modes on the edges of the two planes. Surprisingly, under the appropriate conditions
on the choice of the boundaries, zero energy modes localised at the corners survive, so
that the HOTI phase can occur. This is indeed the case if the sample is dodecagonal
and one of the edges is of the armchair type. For this case, the result is shown in
fig. 1(a), where, more specifically, the low-energy spectrum obtained for a system with
an apothem of 30.7452 nm is shown. As already reported in [27], it is found that the
interlayer interaction gaps out the zero-energy counter propagating modes on the two
planes and the gap hosts a group of twelve degenerate eigenvalues. These correspond
to states localised on the vertices of the dodecagonal sample, as can be seen from the
density plot in fig. 1(b); such 0D corner modes are a clear signature of the Second Order
Topological phase realised by the model.

The target of this paper is to study the stability of the SOTI phase, just described,
with respect to the presence of geometrical perturbations. As anticipated, this will
be done both by varying the rotation angle between the two planes while keeping the

(1) The Haldane term is not present in real TBG samples, so it can be set at any desired value
as long as the |λH | < 1/3 condition is respected. See [28] for a complete discussion.
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(a) (b)

Fig. 1. – Panel (a): low-energy eigenvalues obtained by diagonalising Hamiltonian (2) for a
dodecagonal sample with an apothem of 30.7452 nm, setting λ⊥ = 2; all the other parameters
are set as specified in the main text. Panel (b): density plot of the square modulus of an
eigenstate associated to one of the twelve degenerate in-gap eigenvalues on the left.

dodecagonal structure, and so applying a deformation to the lattice, and by taking a
sample with a shape not compatible with the C12 symmetry.

As far as the first analysis is concerned, it is necessary to carefully explain what vary-
ing the rotation angle actually means: first of all, without loss of generality, I assume to
keep the lower plane fixed and rotate the upper one. Then two possibilities appear. One
can first rotate the upper layer of 30 degrees, then crop the bilayer with a dodecagonal
shape and finally vary again the rotation angle: this way the two individual layers remain
exactly as in the 30◦ configuration, but the overall sample will not be an exact dodecagon
anymore; let us call this method 1. On the other hand, one can first rotate the upper
layer of the desired angle (for example 29.9 degrees) and then crop the bilayer system
into a dodecagonal sample: this way, for different rotation angles, the upper layer will
present a different configuration of its sites (especially on the edges), but the system will
always correctly fit the dodecagonal shape; let us call this method 2.

As for the second analysis, an octagonal shape will be considered. In fact, for an
octagonal geometry, the shape symmetry is not compatible with the C12 bulk symmetry
of GQ. Among other things, this causes some of the edges to be “badly shaped”. I will
return on this later on.

3. – Results

Here, the results obtained from the diagonalisation of the model in eq. (2) under the
geometrical perturbations described above are presented.

3
.
1. Variation of the rotation angle. – Before presenting the results obtained varying

the angle of relative rotation between the two planes of the bilayer system —that from
now on will be denoted as θ— both with method 1 and method 2, a clarification is
needed: it must be noted that up to a variation that causes a modification of the upper
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(a) (b)

Fig. 2. – Panel (a): low-energy eigenvalues obtained by diagonalising Hamiltonian (2) for a
dodecagonal sample with an apothem of 30.7452 nm, for θ = 29.995◦ and λ⊥ = 2; all the other
parameters are set as specified in the main text. Panel (b): density plot of the square modulus
of an eigenstate associated to one of the six degenerate eigenvalues in the higher-energy in-gap
group on the left.

layer edge sites, there will be no differences between applying one method or the other(2).
A technical note: in the remainder of this subsection it is assumed that λ⊥ = 2 and the
apothem of the dodecagonal sample is 30.7452 nm.

Let us start by considering an angle very close to 30◦, for which the two methods bring
the same result. In fig. 2(a), the low-energy eigenvalues obtained setting θ = 29.995◦

are presented. Except for the rotation angle, all the other parameters are taken as in
fig. 1(a), for an easier comparison. At first sight it would seem that from fig. 1(a) to
fig. 2(a) nothing changes and that there are still twelve degenerate eigenvalues inside
the gap. Actually, by taking a closer look to the numerical value of the energy levels
—omitted for brevity— one finds that the degeneracy is lifted: for θ = 29.995◦ the twelve
in-gap modes separate in two groups of 6-fold degenerate eigenvalues. The eigenvalues
of the two groups correspond to eigenstates with distinct localisation pattern: more
precisely, the associated states are still corner modes, but each group is localised on six
of the twelve corners, as can be seen from the density plot in fig. 2(b).

Now let us consider a bigger deviation from the 30◦-twist (and so from the quasicrys-
talline phase). For θ = 29.95◦ method 1 and method 2 bring different results, as shown
in fig. 3(a) and fig. 3(b). By comparing the first with fig. 2(a), it appears that the degen-
eracy lifting inside the group of twelve eigenvalues is now slightly more visible; the two
groups of 6-fold degenerate eigenvalues inside the gap still correspond to states localised
on alternate corners, as in fig. 2(b), but with longer localisation length (density plot not
shown). Diagonalising for yet greater deviations from the thirty degrees, one would find

(2) The value of δθ for which the sites of the upper edges change in order to fit the shape,
depends on “how tight” the geometrical container is. This is mainly a computational problem:
the finite size system is constructed by specifying a geometrical box, that can be taken more or
less tight. The physically relevant aspect is to make clear what the “right way” of varying θ is
in a finite size TBG system.
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(a) (b)

Fig. 3. – Panel (a): low-energy eigenvalues obtained by diagonalising Hamiltonian (2) for a
dodecagonal sample with an apothem of 30.7452 nm; θ has been set to 29.95◦ while applying
method 1, λ⊥ = 2 and all the other parameters are set as specified in the main text. Panel
(b): low-energy eigenvalues obtained by diagonalising Hamiltonian (2) for a dodecagonal sample
with an apothem of 30.7452 nm; θ has been set to 29.95◦ while applying method 2, λ⊥ = 2 and
all the other parameters are set as specified in the main text.

that the splitting energy and the localisation length increase in a continuous way (3). On
the other hand, things are quite different when following method 2: what happens here
is that cropping with a dodecagonal shape for θ = 29.95◦ causes some sites on the edges
of the upper layer to change with respect to the 30◦ configuration. This can be seen by
directly inspecting the borders of the finite size lattice (not reported here). The modi-
fication of the sites on the edges turns out in the spectrum depicted in fig. 3(b), that is
drastically different with respect to the ones in fig. 2(a) and fig. 3(a). Indeed, it presents
a proliferation of groups of 6-fold degenerate eigenvalues inside the gap, which no longer
correspond to 0D corner modes (density plots not shown). The application of method
2 for bigger variations of the rotation angle causes further changes of the edges and, as
a consequence, in the low energy spectrum, that rapidly comes to bear no resemblance
with the initial one.

3
.
2. Octagonal shape. – Here, the effect induced on the topological phase by picking

up a polygonal shape not compatible with the bulk symmetry is analysed. In fig. 4(a), the
results obtained from the diagonalisation of Hamiltonian (2) for a sample with octagonal
shape are shown. The diagonalisation has been performed taking λ⊥ = 1 and considering
a sample with an apothem of 22.0139 nm.

Observing the low energy spectrum in fig. 4(a), one sees that it presents striking
differences with respect to the one obtained for the dodecagonal sample. The interlayer
interaction still opens a gap, but this time the gap hosts many groups of four-times
degenerate eigenvalues. In fig. 4(b), the density plot for one of these states is reported:
one finds that its wave function, instead of being localised on the vertices like in the

(3) At least up to the point where the mismatch of the two edges of the two layers is too
pronounced for them to be gapped out by the interlayer interaction. The value of δθ for which
this happens depends from the sample size.
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(a) (b)

Fig. 4. – Panel (a): low-energy eigenvalues obtained by diagonalising Hamiltonian (2) for an
octagonal sample with an apothem of 22.0139 nm, setting λ⊥ = 1; all the other parameters are
set as specified in the main text. Panel (b): density plot of the square modulus of an eigenstate
associated to an eigenvalue that belongs to the degenerate in-gap quadruplets on the left.

dodecagonal case, is delocalised on four of the eight edges of the octagon while it vanishes
on the other four. Actually, the four edges where the probability density doesn’t go to
zero are just those that are not compatible with the C12 symmetry of the quasicrystal
bulk.

Increasing the sample size, the conclusions remain qualitatively the same: one still
finds groups of 4-fold degenerate eigenvalues, which correspond to states localised on
the four edges not compatible with the C12 symmetry (not shown). The only difference
is that the number of these quadruplets of degenerate eigenvalues proliferates with the
sample size. This feature is most likely due to the quasicrystalline nature of the structure
considered which implies that all length scales actually matter.

4. – Discussion

In sect. 3
.
1 I showed that even a minimal deformation of the lattice (θ = 29.995◦)

breaks the topological phase as described in [27], lifting the degeneracy between the
twelve in-gap eigenvalues and modifying the localisation pattern of the associated corner
modes. That said, the perturbed system has some interesting features too: the twelve
degenerate eigenvalues split in two 6-fold degenerate eigenvalues that correspond to 0D
modes localised on alternate corners of the sample. Most likely, this happens because
when the two layers are slightly mismatched, the system has C6 symmetry: indeed, if
one rotates each individual layer of 60◦, the geometrical distribution of the sites remains
unchanged.

On the other hand, the topological signature is completely altered when the sites on
the edges undergo a modification. A proof of this is given by the low energy spectrum
reported in fig. 3(b), which was obtained by varying the bilayer rotation angle while
adopting method 2.

The role of the edges in the realisation of the higher order topological phase becomes
even more obvious in the light of the results reported in sect. 3

.
2. There, it was shown

that considering an octagonal sample, the probability density of the in-gap 4-fold degen-
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erate(4) states goes to zero on four of the eight edges, while it is equally distributed on
the other four (fig. 4(b)). As already mentioned, the four edges on which the probability
density vanishes are those that are compatible with the lattice bulk symmetry(5).

The reason for which on the octagonal sample the in-gap states are localised only on
the “badly cropped” edges —those not compatible with the bulk symmetry– is that their
border sites present bad superposition between the two layers. In sect. 2 it was explained
that the interlayer coupling is responsible for gapping out the counter propagating Hal-
dane modes on the edges of the two planes: however, because of its trend of decreasing
exponential, this mechanism of gap opening only works if the border sites on the upper
and lower layer perfectly overlap. This condition is met on the four edges compatible
with the C12 symmetry, but not on the “badly cropped” four ones.

This analysis proves that, at least for this model, in order to have 0D localised states
on the vertices of a polygonal sample it is necessary that all the edges are cropped in a
way that is compatible with the bulk C12 symmetry, which, in the end, is the symmetry
protecting the SOTI phase described in [27].

5. – Conclusions

By considering a specific model for a C12-protected SOTI on a quasicrystal, I have
shown that this kind of topological phase is extremely fragile against geometrical per-
turbations. Moreover, I have proven that in order to achieve a higher order topological
phase, at least for the model considered, the compatibility of the sample edges with the
bulk protecting symmetry plays a crucial role. In addition, I have found that the anal-
ysed model, due to its quasicrystalline nature, presents an incredibly rich phenomenology
that certainly deserves further study.
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[9] Väyrynen J. I. and Ojanen T., Phys. Rev. Lett., 107 (2011) 166804.

[10] Dolcetto G., Sassetti M. and Schmidt T. L., Riv. Nuovo Cimento, 39 (2016) 113.

(4) Again, the fact that the in-gap eigenvalues are clustered in groups with a degeneracy of
four, is most likely due to the fact that the octagonal sample has a global C4 symmetry.
(5) Note that for a lattice with the symmetries of GQ cropped in an octagonal shape there can
be four edges compatible with the lattice symmetry —and so “well cropped’— at most.



ROBUSTNESS OF A QUASICRYSTALLINE HIGHER-ORDER TOPOLOGICAL INSULATOR 9

[11] Dolcetto G., Traverso Ziani N., Biggio M., Cavaliere F. and Sassetti M., Phys.
Status Solidi (RRL), 7 (2013) 1059.

[12] Dolcetto G., Traverso Ziani N., Biggio M., Cavaliere F. and Sassetti M., Phys.
Rev. B, 87 (2013) 235423.

[13] Hart S., Ren H., Wagner T., Leubner P., Mühlbauer M., Brüne C. and Buhmann
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