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Summary. — In this study, a dataset collected with a carbon nanotube based
sensor array is analyzed to discriminate healthy from sick patients affected by
chronic obstructive pulmonary disease (COPD). The dataset is analyzed with two
approaches, the Principal Component Analysis (PCA) and the Neural Network. A
comparison between the results obtained with these two methods is made. The
applicability of the Neural Network is discussed, along with methods used to avoid
the over-fitting problem.

1. – Introduction

An e-nose can be regarded as an array of sensors where the set of data collected by this
device is analyzed by machine learning tools. This analysis is usually aimed to provide
a classification of data according to specific requirements. For example in breathomics,
the classification is aimed to identify patients with a specific disease, in food control the
classification is aimed to identify fresh food samples, or the origin of specific products
(coffee, tea, honey, wine, olive oil, cereals, and so on) [1-4]. In addition to sensor arrays,
also analytical instruments such as gas chromatographers, mass spectrometers, and infra-
red spectrometrs are often regarded as e-noses, because the spectral fingerprint of the
investigated samples can be analysed with the statistical approaches used for sensor
arrays data classification. Figure 1 summarizes the most common analytical tools, which
are usually classified as branches of the more general machine learning approach.

Neural networks are among the possible tools to treat the data set produced by
e-noses. Although PCA is the most diffused method to classify datasets, equipping
also commercially available systems, neural networks can offer a robust classification of
datasets outperforming, if the network is properly trained, PCA algorithms [5]. Among
the sensors that can be used to build an e-nose, the most diffused are chemiresistive
sensors and electrochemical sensors [6]. In particular, chemiresistive nanostructured car-
bon based sensing layers have recently attracted much attention due to good sensitivity,
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Fig. 1. – Classification of existing Machine/Deep Learning techniques.

stability, and the capability of operating at room temperature. Several applications have
already been devised and some devices based on carbon nanotubes (CNTs) or graphene
oxide (GO) have been brought up to a proof-of-concept stage, including the use in breath-
omics [7-10]. Indeed, exhaled breath contains a number of volatile organic compounds
(VOCs) as gaseous molecules that are products of physiological and pathophysiological
metabolic processes. Hundreds of VOCs can be detected in human breath, and their
concentration may be altered due to infectious and metabolic diseases, genetic disorders,
and various forms of cancer. When the concentration of specific VOCs is altered, these
VOCS can be regarded as biomarkers of a particular disease. Therefore, VOCs analysis
with e-noses addresses many of the issues related to breathomics, as it can be used for
health diagnosis as a non-invasive, inexpensive, and widespread alternative to regular
health screening campaigns.

In the present study, a dataset collected with a CNT-based sensor array [9, 11] is
analyzed through PCA and neural network approaches. We discuss the feasibility of
neural networks to discriminate healthy from sick patients affected by chronic obstructive
pulmonary disease (COPD). Indeed, CNT layers are known to be quite sensitive to
nitrogen dioxide and ammonia, which are usually regarded as COPD biomarkers in the
exhaled breath.

2. – Experimental and computational details

The sensor array used to collect data was composed of 8 layers based on single-walled
carbon nanotube (SWCNT) layers functionalized with organic molecules. The 8 sensors
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were set on a properly designed board with 8 independent read out channels for the
simultaneous detection of each sensor’s response. Relative humidity and temperature
were also collected. The sensor signal was acquired using a script written in the Lab-
VIEW environment. The sensing properties of the array upon gas/volatile exposures
were analysed in the chemo-resistive configuration, where the presence of gases/volatiles
is detected by monitoring the change in the resistance value of the sensitive element, i.e.,
bundles of SWCNTs (bare or functionalized). Breath samples were collected (after signed
consent) from 11 volunteers aged 22–88 years. Among them, 7 volunteers suffered from
COPD, while 4 were healthy control volunteers. All volunteers were recruited within a
research project funded by the Università Cattolica del Sacro Cuore in the frame of the
2016–2018 D 3.2 Strategic Program. For each volunteer, several samples were collected
in different days. An overall number of 52 samples were analysed. Breath sampling was
carried out in a disposable bag (volume = 0.6 liters), containing the sensor array, and
inflated by breath through a disposable plastic straw. The exposure time was set at 3
minutes to let all sensors fully interact with the breath sample. All details about the
sensor array and the data collection have been reported in [11] and [9].

The Neural Network was developed in neuralnet, an R package which allows training
neural networks using backpropagation. The package permits to customize the error and
activation function. The used neural network activation function is the logistic function,

(1) f(x) =
1

1 + e−x
.

The activation function is employed to process incoming information in every neuron and
pass it through the network. In this work, the activation function is applied also to the
output neurons. To understand the role of the activation function, it can be imagined
as a process that sums all the input signals and determines whether the sum reaches the
threshold. If it does, then the signal is passed through the network.

The training algorithm used is the standard backpropagation algorithm, in the most
general form this algorithm iterates many cycles of two processes. Every cycle is called
an epoch. In the very first cycle, the network contains no knowledge, the starting weights
are typically set randomly. The algorithm goes on until a stopping criterion is reached.
Each epoch includes:

• Forward phase: Neurons are activated from the input layer to the output layer,
applying each neuron’s weights and activation function. When the signal reaches
the final layer, the output signal is produced.

• Backward phase: The output signal resulting from the forward phase is compared
to the true target value in the training data. The difference between the output
signal and the true value results in an error that is propagated backward in the
network. This error modifies the connection weights between neurons and reduces
the final error.

This algorithm aims to find the minimum of the error function. The gradient of the error
function is calculated with respect to the weights in order to find a root. Weights are
modified going in the opposite direction of the partial derivatives until a local minimum
is reached. If the partial derivative is negative the weight is increased, if the partial
derivative is positive the weight is decreased. The algorithm stops when the partial
derivatives of the error function reach the threshold (0.01). One problem with this
algorithm is that it may find a local minimum.
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Table I. – Results obtained from the PCA in terms of variance that each component represents
and the standard deviation.

Parameter PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.6097 1.0664 0.61722 0.47172 0.41058 0.32764 0.25966

Proportion of variance 0.7567 0.1263 0.04233 0.02472 0.01873 0.01193 0.00749

3. – Data analysis

All the work done refers to the paper [11], and the data required to write this article
were kindly provided by the authors. The data analysis was performed using R which is
a programming language for statistical computing.

All data used were properly normalized by subtracting the mean from each column
to center the data, and by dividing each column by its standard deviation to scale the
data.

The first technique used for this analysis is the Principal Component Analysis (PCA).
The first step in the analysis was decomposing the data in the space of principal compo-
nents. The results obtained from this decomposition are presented in table I, for every
principal component the standard deviation and the portion of variance explained are
shown.

From table I we can see that the first two principal components describe 88% of the
variance, so that using only these two components gives a good representation of the
dataset. The first two components were used to discriminate healthy from sick patients.
Figure 2 presents a graph of the two components plotted, on the x-axis there is the first
component, and the second one is on the y-axis. Circles represent sick patients affected
by COPD, and triangles represent healthy patients. The line is used to highlight the two
clusters and to show that they are linearly separable.

As we can see from fig. 2 patients cluster as their condition, i.e., all sick patients
are on the left side of the graph and all healthy patients on the right. We can say
that the two clusters are linearly separable except for one patient who appears to be
positioned between the two clusters. If we draw a line to divide these two clusters, this
sick patient is predicted to be healthy (we can see in fig. 2). The PCA was also used
in the original article [11]. To compare the results and to see which method performs
better. Another technique is also applied in this study. The second technique used to
analyze the dataset is the Neural Network, which was developed using the R package
neuralnet. There is not a reliable rule to determine the number of hidden layers and the
number of neurons in each layer. The appropriate configuration depends on the number
of input nodes, the amount of training data, and the complexity of the task. To choose
the appropriate number of hidden layers and neurons, 8 different topologies were tested,
in fig. 3 a scheme of all the topologies tested is presented, each configuration is associated
to a letter, usually topologies are also labeled with a sequence of comma-separated digits
representing the number of neurons for each layer, for example the configuration A can
also be labeled as (9, 3, 2).

Since the dataset is composed of only 52 measures (coming from 11 volunteers), to
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Fig. 2. – Result of the PCA analysis with the first two principal components. The circles are
sick patients affected by COPD and triangles are healthy patients. The line is used to show
that, except for one patient, clusters are linearly separable.

avoid the problem of over-fitting some precautions were adopted:

• When preparing the training and testing dataset, data from some patients (includ-
ing the ones who were wrongly predicted by the PCA) was used only in the test
dataset to see how the neural network behaves with unseen data.

• When preparing the training dataset, few measures per patient were used attempt-
ing to insert as many different patients as possible, consistently with the previous
point.

When using these two precautions, the training dataset is homogeneous and the testing
dataset contains unseen patients. This should have minimized the over-fitting probability.
To choose the best topology among the eight ones that have been (fig. 3) tested, the SSE
(Sum of Squared Errors) was considered. This error is defined as the sum of square
differences between actual and predicted values and tells us how much the model fits
the training dataset. Since the dataset used is quite small having a perfect fit on the

Fig. 3. – Topologies of the 8 configurations tested.
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Table II. – SSE and results of the predictions for the different 8 topologies.

Configuration A B C D E F G H

Sick predicted healthy 0 0 0 0 0 0 0 0

Healthy predicted sick 3 3 1 1 3 1 1 0

Total errors 3 3 1 1 3 1 1 0

SSE error 0.011 0.004 0.011 0.005 0.009 0.011 0.006 0.012

training dataset, it can result in a model too specialized on the training dataset which
cannot handle data coming from an unseen patient. This will be taken into account when
choosing the configuration. As the SSE error gives us no information about how well the
model works on the testing dataset, the number of correctly predicted measures on the
actual test dataset was also used. Table II shows all the results obtained for the eight
configurations.

A significant result is that all the wrongly predicted patients are healthy subjects
which are predicted to be sick. From table II we can see that configuration H (with a
9, 8, 5, 2 sequence of neurons in the four layers) is the one that better fits our needs, as
it is the one with the higher SSE error (less specialized on the training dataset) and it
is the topology that predicts all patients accurately (handles well unseen subjects). A
remarkable fact is that all the topologies are correctly predicting the patient that the
PCA was failing to predict. This model improves its performance and reliability when
we enlarge the dataset, so it is the best choice for a large-scale application.

4. – Conclusion

Data collected with a carbon nanotube based sensor array was analyzed using two
techniques, PCA and Neural Network, to discriminate healthy from sick patients affected
by COPD (chronic obstructive pulmonary disease). The feasibility of the Neural Network
was discussed. To choose the best configuration, eight different topologies of neural
network were tested. We discussed the problem of over-fitting and presented the methods
adopted to avoid it. The results obtained using the two methods were compared. Unlike
PCA, the Neural Network classifies all the patients correctly. A remarkable result is
that, for all the tested configurations, wrongly predicted patients were always healthy
subjects that were predicted to be sick. Neural networks improve their performance and
reliability as we enlarge the dataset, therefore this technique is promising to handle data
from large-scale screening campaigns.
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