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Summary. — Several Beyond Standard Model (BSM) theories predict the exis-
tence of new massive particles decaying to pairs of top quarks, tt̄. In this concept
work, the key observable for such resonance searches, the top-pair system invariant
mass, mtt̄, is reconstructed by training a deep neural network on a sample of simu-
lated tt̄ events. A regression task is then performed on both tt̄ and Z′ signal events,
using mtt̄ as output parameter. The comparison between this machine learning
approach and more traditional system reconstruction techniques highlights a tangi-
ble improvement in the ability to correctly reconstruct and resolve a TeV-scale tt̄
resonance peak.

1. – Introduction

Massive particles decaying into top quark-antiquark pair (tt̄) [1] are predicted by
many theoretical models, which are introduced to provide explanations to the various
open questions raised by the current formulation of the Standard Model of Particle
Physics (SM). Due to its large mass, the top-quark decays before hadronizing, with a
lifetime of about O(10−25) s. Therefore, the top-quark has to be reconstructed from its
decay products, and since it decays 99.8% of the times to a W boson and b-quark [2], the
final-state topologies in tt̄ production are strongly dependent on the decay modes of the
W bosons. The study of tt̄ resonances constitutes a cornerstone of the physics programme
of the ATLAS experiment [3] at the CERN Large Hadron Collider (LHC) [4], in which
BSM studies on tt̄ are typically performed in the semileptonic and dileptonic channels.
These conventional tt̄-resonance searches rely on the comparison of the data yield with
the expected SM-background, taking into account the reconstructed tt̄ invariant mass
distribution, mtt̄ in each bin. New physics signals would be seen as a localized excess
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of data events with respect to the SM-background expectation, or, in case of strong
interference effects, as a deficit, or even as a non-trivial peak-dip structure [5]. As a
matter of fact, the dilepton channel allows to achieve a strong sensitivity to the tt̄ spin
correlation through variables as simple as the azimuthal angle difference between the two
charged leptons Δφ��, due to the large spin analyzing power of leptons, close to unity. The
main drawback, due to the presence of two undetected neutrinos, is that the quantity mtt̄

is not directly accessible. To precisely reconstruct mtt̄, a regressive Deep Neural Network
(DNN) is employed; DNNs belong to a subset of Machine Learning algorithms which are
meant to improve automatically their performance through experience, without being
explicitly programmed to perform a specific task and with few or no assumptions on the
underlying physical processes.

2. – Simulated event samples and model architecture

The datasets used for the DNN training and testing consist of SM events generated
through a full Monte Carlo (MC) simulation of the ATLAS detector performed with
GEANT4 [6]. The simulated samples emulate p-p collisions at

√
s = 13TeV and the

LHC Run 2 beam conditions, and represent tt̄ events decaying in the dilepton chan-
nel, generated at the NLO-QCD accuracy by the Powheg program [7], interfaced to
Pythia8 for simulating the parton shower and hadronization steps [8]. Events are re-
quired to pass an initial base selection, demanding at least two reconstructed hadronic
jets and exactly two high transverse-momentum leptons (electrons or muons) with same
or opposite flavour, and opposite charge.

Each of the 40 million events that composes the training dataset is characterised by
a label, representing the MC truth value of the mtt̄ variable, and by a collection of 22
features which correspond to the measured four momenta of the two charged leptons and
of up to three jets in the event, as well as the available information on the missing energy
in the transverse plane. The four momenta are expressed in terms of the energy (E),
the transverse momentum (pT ), the azimuthal angle (φ) and the pseudorapidity (η), in
addition to the missing transverse energy (Emis

T ) and the associated angle (φmis). If less
than three jets are produced, the missing measurements are filled with the 0 value.

Training events are selected in order to form a dataset in which the label mtt̄ is uni-
formly distributed, i.e., in which the energy bins are set to reach a maximum number
of counts. The dataset has sufficient statistics to guarantee a mtt̄ distribution approx-
imately uniform up to 2TeV; this characteristic enables the possibility to exploit the
trained DNN to test BSM physics, in particular the production of a tt̄ pair originating
from the hypothetical Z ′ decay [9].

The model chosen for the analysis consists of a deep feed-forward neural network,
structured as a 22-nodes input layer, three hidden layers, each one with 100 nodes and a
single-node output, estimating the value of mtt̄ for each event. The model architecture
is summarized in table I. After each layer, a rectified linear activation function is used.
The Mean Absolute Error (MAE) is taken as loss function; the Adam optimiser [10] is
used to minimise the loss function with respect to the network parameters. The DNN
training comprises a few tens of cycles over the full set of event samples (epochs). Each
epoch is batched into subsamples of 50 events, with a learning rate set to 0.0001. The
architecture of the DNN, implemented with the Keras [11] software package, and the
training parameters were chosen from several trials to ensure reproducible and optimal
performance.
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Table I. – Schematic summary of the model chosen for data analysis.

Layer Connection Output Shape Parameters

Hidden (1) dense (none, 100) 2300

Hidden (2) dense (none, 100) 10100

Hidden (3) dense (none, 100) 10100

Output dense (none, 1) 101

3. – Validation with MC data

The DNN is deployed to reconstruct mtt̄ of both SM and BSM simulated events; The
results are compared with those given by two other more traditional methods, which are
briefly described below.

3
.
1. llbb. – This method consists in the calculation of the partial invariant mass mllbb

of the top-antitop pair, given by

(1) mllbb =
√(

pl+ + pl− + pb1 + pb2
)
μ

(
pl+ + pl− + pb1 + pb2

)μ
,

where pl
±

and pb1,2 are the four-momentum vectors for electron or muon and b-tagged
jets, respectively. This method is considerably straightforward, thus often adopted; the
obvious drawback is that the contribution of the two undetected neutrinos to mtt̄ is just
neglected.

3
.
2. Neutrino weighting . – The neutrino weighting technique [12] relies on scanning

over a set of possible values for the two neutrino pseudorapidities, solving a system of
equations for each possible pair of values, and then checking the compatibility of the
found solutions with the measured value of Emis

T . The solution with the largest weight
is selected. However, the performance of this technique suffers from the non-negligible
fraction of events where no suitable solution is found, especially for high values of mtt̄.

The Pearson correlation coefficient ρ between true and predicted values of mtt̄ is
considered to precisely estimate the accuracy of the various methods. Even if still in a
preliminary stage, the comparison between the correlation coefficients for each technique,
shown in table II, suggests a better efficiency of the DNN in reconstructing mtt̄, both in
the case of SM and BSM events.

4. – Conclusions

In this work, a feed-forward Deep Neural Network was implemented and it proved to
be a useful tool for reconstructing the invariant mass of top quark pairs decaying in the
dilepton channel. Comparing this innovative method with some of the most commonly
used traditional analysis techniques, such as the usage of the invariant mass of the visible
decay products only (“llbb”) as a proxy for mtt̄, as well as a partially analytic solution
for neutrino reconstruction (“neutrino weighting”), it was possible to show significant
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Table II. – Summary of the values of the Pearson correlation coefficient measured for each of
the considered mtt̄ reconstruction method.

DNN llbb Neutrino weighting

ρSM 0.82 0.59 0.61

ρBSM 0.43 0.28 0.23

improvements in mass estimation in both SM and BSM scenarios. Several upgrades to
the analysis are undergoing development: considering additional high-level features such
as b-tagging, exploiting different architectures for the neural network, and providing
a multi-dimensional output prediction, i.e., adding to mtt̄ other significant variables
predictions, such as a spin-correlation–sensitive angular observable.

This novel regression method is planned to be adopted in searches for a heavy Higgs
boson decaying to tt̄ pairs [13], as well as in a possible Z ′ search.
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