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Summary. — We investigate the impact of the 6Li ground-state deformation on
Coulomb-barrier penetrability in nuclear reactions between 6Li and a structureless
projectile. The 6Li ground state is described through a quantum di-cluster model,
including a quadrupolar component which induces a tensor term in the projectile-
target interaction. The corresponding ground-state form factor, for each possible
6Li orientation, is employed as a potential barrier in a Wentzel-Kramers-Brillouin-
Jeffreys (WKB) radial penetrability calculation. The formalism was applied to the
6Li–p scattering. Throughout the sub-Coulomb energy range, we find no significant
influence of the tensor interaction on the overall penetrability.

1. – Introduction

In a nuclear reaction between charged particles at energies below the Coulomb bar-
rier, the process of overcoming the reactants electrostatic repulsion through quantum
tunnelling plays a paramount role, hence the need to study it in detail. In heavy-ion fu-
sion reactions, correlations between the reactants internal degrees of freedom are known
to increase the sub-barrier cross sections [1]. In light-ion reactions, the role of clustering
in the barrier penetration process has been studied through semi-classical models [2], in
the attempt to explain a set of experimental anomalies known as the electron screening
problem, which is also important for its possible astrophysical implications. The goal
of this work is to analyse the effects of the quadrupolar deformation of the 6Li ground
state on the Coulomb barrier seen by another nucleus, which is a proton in the present
application. In particular, a 6Li wave-function including both s and d components is con-
structed phenomenologically as in ref. [3] (sect. 5.3), then employed to generate a form
factor for the 6Li–p interaction, in analogy with the procedure in refs. [3,4]. Finally, the
transmission coefficient for barrier penetration is computed in the WKB approximation
as in ref. [2]. The model and the performed calculations are covered in greater detail in
ref. [5].
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2. – Construction of the 6Li di-cluster-model deformed state

The 6Li nucleus is here modelled as a bound state of two inert clusters, an α-particle
and a deuteron, each found in the ground state of the corresponding isolated nuclide,
with spin-parity 0+ and 1+ respectively. Let |Ψ1,σ〉 be a state for the internal motion of
both clusters, in which the deuteron has definite spin projection equal to σ. Similarly,
let |Li1,M 〉 be the ground state of 6Li with spin-parity 1+ and spin projection M . To
correctly couple both angular momentum and parity, the orbital-angular-momentum
modulus quantum number for the inter-cluster motion, L, must be 0 or 2. The 6Li state,
projected on a specific inter-cluster displacement r, expressed in spherical coordinates as
r = (r, θ, φ), can thus be written as

(1) 〈r |Li1,M 〉 =
∑
L,m

〈(L,m), (1,M −m) | 1,M〉 cLφL(r)YL,m(θ, φ) |Ψ1,M−m〉

where YL,m is a spherical harmonic, 〈(j1,m1), (j2,m2) | J,M〉 is a Clebsch-Gordan coef-
ficient, the cL are a set of weights, and each φL(r) is a radial wave-function normalised
to 1. Since only bound states are considered, all φL and cL are taken to be real, further
setting that each φL(r) is non-negative at infinity and c0 =

√
1− |c2|2. The radial wave-

functions are the same employed in ref. [3] (sect. 5.3). c2 can be adjusted with respect to
the di-cluster-model predictions for the charge electric quadrupole moment [3] (eq. (5.4))
or the magnetic dipole moment (deduced from ref. [6], eq. (A.9)), finding respectively
c2 = −0.0909 or −0.257, using experimental data in [7]. The agreement may possibly
be improved using a more microscopical construction of the radial wave-functions (as
in ref. [4]). Within the present model, the conclusions of the study do not change by
adjusting c2 on either observable. The figures shown here refer to c2 = −0.257.

3. – Construction of the projectile-target potential

Let V1p and V2p be phenomenological potentials, taken as central for simplicity, for
the interaction between the structureless projectile, a proton, and each cluster compos-
ing the 6Li target. The potentials can be expressed in terms of the α–d displacement, r,
and the 6Li–p distance, R. The complete projectile-target potential, Vtp(r,R), is then
V1p(r,R)+V2p(r,R). To focus on the impact of ground-state deformations, all couplings
to excited states are neglected. Then, the eigenvalue problem for the α–d motion can
be decoupled from the 6Li–p scattering problem. To solve the latter, it is sufficient to
consider the form factor 〈Li1M ′ |Vtp|Li1M 〉, denoted as V (M,M ′,R). Performing the in-

tegration over r, it is V (M,M ′,R) = 〈1,M ′|Ṽtp|1,M〉, where |J,M〉 is a state describing

only the 6Li spin degree of freedom, and Ṽtp acts only on such spin and on R.

Vtp can be decomposed in multipoles of both coordinates (r and R). In a classical
cluster model, as in ref. [2], all multipoles would be retained. Here, the form factor
selects only those compatible with the state under study (|Li1M 〉 in eq. (1)), namely the
monopole and the quadrupole. These multipoles of Vtp generate, respectively, a central

and a tensor component in Ṽtp, which can thus be written as

(2) Ṽtp = UC(R) + UT (R)
1

�2

[(
Ĵ t ·R/R

)2

− 1

3
Ĵ2
t

]
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where Ĵ t is the 6Li spin vector operator and R = |R|. The central functions UC(R)
and UT (R) were computed as in ref. [4] (eqs. (9), (11)), but without truncating to first
order in c2. A sample of the radial profiles of the form factor computed in this manner
is shown in fig. 1. The adopted α–p interaction is the central part of the potential in
ref. [8] (eq. (4.3)), while the d–p potential was obtained from the Fr2in code [9].

4. – The 6Li+p barrier penetrability

In analogy with the approach followed in ref. [2], consider a fixed centre-of-mass
collision energy E, spin projection M of 6Li, and orientation of R. The corresponding
s-wave radial transmission coefficient, TM,θ(E), was calculated in WKB approximation
[10] (sect. VI.10), adopting a central potential barrier VM,θ(R) equal to the form factor
V (M,M,R). Treating the complete non-central problem phenomenologically as a set of
many central problems (as a function of the direction) greatly simplifies the computations,
but may destroy some features of the system which are relevant for the process of interest.
This appears to be the most severe approximation performed in the calculation discussed
here.

Let m be the reactants reduced mass and Z the product of their charge numbers. The
angle-integrated cross-section for barrier penetration in s-wave, σ(E), can be expressed
as σ(E) = �

2π/(2mE)T (E). Furthermore, let S(E) be the corresponding astrophysical

S-factor, defined as S(E) = E exp(2πη)σ(E), where η = αeZ
√

mc2/(2E), with αe being
the fine-structure constant and c the speed of light in vacuum. Figure 2 displays, as
orange points, the average over all orientations and spin projections of the computed
astrophysical factor. The black solid line is instead the astrophysical factor calculated
using the average of VM,θ (shown as the black solid line in fig. 1) as potential barrier.
The difference between the two calculations is seen to be negligible. Note that taking the
average of the deformed potential is slightly different than considering a spherical 6Li, but
the deviation is comparable with the uncertainty introduced by the phenomenological
radial wave-functions employed in eq. (1).

Fig. 1. – Radial profiles of the form factor V (M,M ′,R), for different 6Li spin projections, M
and M ′, and angles θ between projectile-target momentum and 6Li quantization axis. The black
solid line is the average over all orientations (i.e., just UC in eq. (2)).
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Fig. 2. – Preliminary astrophysical factor for 6Li–p WKB radial barrier penetration in arbitrary
units. Orange points refer to the average of the penetrability over all angles and spin projections.
The black solid line was computed using the potential shown as the black solid line in fig. 1.
See text for details.

5. – Conclusions

The role of the ground-state quadrupole deformation of 6Li on Coulomb barrier pene-
trability in reactions with a proton was explored by modelling this system as a quantum
bound state of α and d, expanding the semi-classical model proposed in ref. [2]. Within
this preliminary calculation, the tensor interaction generated by the deformations does
not affect the overall barrier penetrability. We stress that the possible impact of dy-
namic deformations or reorientations was not investigated here. The present formalism
would benefit by an improved treatment of the cross-section calculation, for instance
using some of the ideas discussed in ref. [1]. It may also be relevant to provide a more
microscopic form for the 6Li wave-function, following the construction in ref. [4], and
refine the adopted projectile-cluster interactions.
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