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The gravitational field of isolated objects in quadratic gravity
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Summary. — When describing gravity at high energies it is natural to intro-
duce terms quadratic in the curvature as first corrections to the Einstein-Hilbert
action. Static, spherically symmetric classical solutions are studied in the case of
the quantum-motivated R + R2 + CμνρσCμνρσ theory. In contrast with the case of
General Relativity, where the metric is forced to be the Schwarzschild one, a large
spectrum of solutions with different gravitational potentials has been found. It is
shown how these solutions populate the parameter space of the theory, and some
possible phenomenological implications of this modified potential are discussed.

1. – Introduction

Gravity has always been the guiding light of Physics into field theories; neverthe-
less, it is the only fundamental interaction for which there is no general consensus on a
Quantum Field Theory description. In a standard, perturbative QFT context, General
Relativity can be consistent only as a low energy effective theory, having divergent cor-
rections at higher energies. The form of the counterterms at one-loop has made clear
that the first sensible corrections to the Einstein-Hilbert action are terms quadratic in
the curvature [1]. Such terms appear also in the low energy limit of String Theory [2],
and in non perturbative analysis of the Renormalisation Group flow of gravity [3]. The
most general quadratic Lagrangian in four dimension without cosmological constant can
be written as

(1) SQG =

∫
d4x

√
−g

[
γ R+ β R2 − αCμνρσC

μνρσ
]
,

where R is the Ricci scalar and Cμνρσ is the Weyl tensor. Within this theory, gravity
has three mediators: the standard massless graviton, a massive scalar, and a massive
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spin-2 particle. At quantum level it has been proven by K. Stelle that this theory is
renormalisable, but at the price of a loss of unitarity due to the presence of negative
energy states for the spin-2 particle [4]. While there have been various proposals to solve
this issue [5-7], a more conservative approach, where the action is not considered as a full
quantum theory but only as a first-order correction of an unknown theory of quantum
gravity, has been preferred. Considering the major contribution of quadratic curvature
terms in the description of the very early universe [8], the classical solutions of (1) are
indeed good candidates to be first-order quantum corrections to the solutions of GR.

Solutions representing the most simple isolated objects, i.e., static and spherically
symmetric, have been studied extensively in recent times, both in the vacuum [9-12] and
the non-vacuum [13] cases. In addition to the ones of General Relativity, many solutions
have been found: non-Schwarzschild black holes, wormholes and exotic naked singulari-
ties. This large variety in the spectrum of solutions is in contrast with the classical case,
where the metric is forced to be the one of Schwarzschild, and is completely characterised
by the total mass M . In this communication it is shown how the gravitational potential
is modified by the different types of solutions, picturing a sort of “phase diagram” of the
theory. Moreover, it is shown how these modifications can have relevant implications for
astrophysical observations of compact stars [13].

2. – Analytical and numerical setups

2
.
1. Equations of motion and analytical approximations . – As the ansatz for the met-

ric, it has been chosen the static, spherically symmetric one in Schwarzschild coordinates

(2) ds2 = −h(r) dt2 +
dr2

f(r)
+ r2dΩ2,

and, in the case of compact stars, the perfect fluid stress-energy tensor which, with
these symmetries, depends only from the energy density ρ(r) and isotropic pressure p(r).
From the minimisation of the action and the conservation of the stress-energy tensor it is
possible to derive a set of three ordinary differential equations at third order in h(r) and
f(r), and first order in ρ(r) and p(r). The introduction of an equation of state p = P (ρ)
specifies the physical nature of the fluid and closes the system of equations.

Considering isolated objects, at large distances it is possible to express the metric as
a small perturbation around the flat one and linearise the equations. As shown in [9,12]
the solution for the metric in this weak field limit is

h(r) = 1− 2M

r
+ 2S−

2

e−m2 r

r
+ S−

0

e−m0 r

r
,(3a)

f(r) = 1− 2M

r
+ S−

2

e−m2 r

r
(1 +m2 r)− S−

0

e−m0 r

r
(1 +m0 r) ,(3b)

where the masses are m2
0 = γ/6β and m2

2 = γ/2α, and are respectively the ones of the
scalar and spin-2 particles of the quantum theory. From (3a) it can be seen that the
gravitational potential φ(r) = 1

2 (h(r)− 1) is not completely determined by the total

mass M , but also by two “charges” S−
2 and S−

0 associated with Yukawa corrections.
The different types of solutions are classified by the first exponents of a Frobenius-like

series expansion around either the origin or a radius r0 �= 0 [9, 10]. In particular, black
holes appear when the functions h(r) and f(r) go to zero linearly at r = rH , and compact
stars when there is no horizon and the metric is regular everywhere. There are, however,
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solutions that are not present in GR; understanding in which way the parameters of the
gravitational potential (M,S−

2 , S−
0 ) relate with the different families of solutions is the

major point addressed in this communication.

2
.
2. Numerical procedures . – The search for solutions of (1) in this setting is reduced

to solving a system of third order ODEs. Two different approaches have been used:

• an a posteriori classification, where the equations are integrated from a large radii
with initial values given by (3) and classified by their behaviour at a radius r0 �= 0
or at the origin;

• an a priori characterization, where a type of solution is chosen by fixing the metric
at an internal boundary and is matched with the weak field limit at large radii with
a shooting method technique.

The first method has been used to study the phase diagram of the theory, while the
second one has proven to be efficient to study specific types of solutions (a more detail
explanation on the use of the shooting method can be found in [12,13]).

3. – Isolated objects in quadratic gravity

In fig. 1 the phase diagram of the solutions is presented. There are three macro-regions
populated by exotic solutions not present in General Relativity, while the familiar black
hole and compact star solutions are present only in zero-measure lines, lying on the
surfaces that separate the macro-regions.

The three types of exotic solutions are respectively naked singularities with a divergent
metric, naked singularities with a vanishing metric (discussed in detail in [11]) and non-
symmetric wormholes. These latter solutions in particular are good candidates to be
black hole mimickers and they populate a large volume of the physical part of the phase
diagram (i.e., with M > 0). A complete description of the phase diagram of the solutions
will be given soon in a longer paper.

Fig. 1. – Parameter space of quadratic gravity for m0/m2 = 1.1. Type I, II and III are exotic
solutions, the black dashed line indicates Schwarzschild black holes, while the dashed red and
blue lines indicate non-Schwarzschild ones, solid lines instead indicate compact stars solutions
with different colors standing for different values of k0 in a polytropic e.o.s. p = k0ρ

2.
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Fig. 2. – Differences between masses measured with surface redshift or planetary transit, in
function of the distance from the star surface, for stars with different equations of state.

At last, it is interesting to focus on the consequences of having different corrections
to the gravitational potential with a toy-model thought experiment. A neutron star
with a satellite orbiting at a distance d from the surface is considered; in principle it is
possible to measure the neutron star mass both from the redshift of a photon emitted at
the star surface Mz (R∗), and from the transit of the satellite with the use of Kepler’s
third law MKep (d). In General Relativity, all possible mass definitions coincide with
Schwarzschild parameter M , and the difference from these two measurements would
be zero. In quadratic gravity, instead, not only there would be a difference, but such
difference would be sensitive to the precise nature of the solution, as the equation of state
of the fluid, as shown in fig. 2 for stars with either a polytropic or the realistic SLy e.o.s.

4. – Conclusions

Quadratic gravity is one of the most simple and natural extensions of General Rela-
tivity at high energies. Nevertheless, even in the most simplified setting, the spectrum of
possible solutions is much richer than in the classical case. The solutions of General Rel-
ativity are present only in zero-measure regions of the parameter space, which is mainly
populated by exotic solutions. It is still to determine whether all these exotic solutions
are present also in the physical spectrum of the theory. However, the Yukawa corrections
to the gravitational potential suggest a possible test of General Relativity, and a rich
phenomenology that still has to be considered in a realistic scenario.
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