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Summary. — We study the spectrum of electromagnetic modes in layered super-
conductors. We include the mixing between longitudinal and transverse degrees of
freedom, which has been partly overlooked in the previous literature and is crucial to
describe the correct behaviour at long wavelengths. We derive a generalized plasma
mode, which provides a link between the standard description of the layered plas-
mon and the one of the Josephson plasmon: we show that these are, respectively,
the large-momentum and the low-momentum limits of our model.

1. – Introduction

Plasmons are longitudinal oscillations of the conduction electrons in isotropic metals.
They constitute, along with the transverse electromagnetic (e.m.) waves propagating
trough matter, the hybrid light-matter modes of metals, and can be described within
the classical framework of Maxwell’s equations. Theoretically, e.m. waves and plasmons
arise, respectively, as transverse (∇ ·ET = 0) and longitudinal (∇×EL = 0) solutions
obeying the following equations [1]:

(1)

⎧⎨
⎩
(
ω2 − ω2

P − c̃2|q|2
)
ET(q, ω) = 0,(

ω2 − ω2
P

)
EL(q, ω) = 0,

where q and ω are, respectively, the wavevector and the frequency of the e.m. mode.
c̃ ≡ c/

√
εB is the light velocity in the medium and ωP ≡

√
(4πe2n)/(εBm) is the isotropic

plasma frequency, εB being the background dielectric constant. Plasmons can also arise
when a metal undergoes a superconducting (SC) transition: in such case, they involve
longitudinal oscillations of the superfluid electrons.

From an experimental point of view, plasmons can be studied by means of techniques
such as non-linear Terahertz (THz) spectroscopy [2-5], where intense THz radiation is
used to illuminate samples, or Electron Energy Loss Spectroscopy (EELS) [6, 7], where
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high-energy electron beams are used as an external scalar perturbation to probe lon-
gitudinal excitations. Such experimental protocols have been widely used recently to
investigate layered cuprate superconductors. These systems host arrays of stacked 2D
copper-oxide SC layers coupled by a weak Josephson interaction, which pushes the ener-
getic cost of an inter-layer (i.e., along the crystallographic c-axis) Josephson-plasma mode
(JPM), whose zero-momentum value we denote by ωc, down to the THz range; on the
other hand, the high intra-layer (i.e., along the crystallographic ab-planes) carrier mobil-
ity allows for the existence of a high-energy plasmon (ωab at q = 0). Cuprates show then
a strong anisotropy along the c-direction, and offer therefore a wide spectrum of excita-
tions, ranging from few THz to the eV. EELS experiments, due to the finite electron mass
and the large amount of energy carried by the beams, give access to the large-momentum
and high-energy plasmon dynamics; such regime can be accounted for by a layered gen-
eralization of the isotropic plasma dispersion, ω2

L(q) =
(
ω2
abq

2
ab + ω2

cq
2
c

)
/|q|2 [8], which

is the standard layered plasmon usually quoted in the literature. On the other hand,
non-linear THz spectroscopy explores the dynamics of the low-momentum, low-energy
JPM, whose dispersion is given by ω2

J(q) = ω2
c

(
1 + λ2

cq
2
ab/

(
1 + λ2

abq
2
c

))
, λab/c = c̃/ωab/c

being the in-plane/out-of-plane SC penetration depth [9].
Despite the previous formulae being correct within their limit of validity, they do not

match each other. Surely the JPM dispersion ωJ is not suitable at generic energy and
momentum, since it is valid only around the low-momentum, low-energy JPM. On the
other hand, the standard layered plasmon ωL does not reduce, in the limit of small energy
and momentum, to the JPM ωJ, which is known to be correct in such limit. The reason for
such discrepancy lies in the fact that the standard layered plasmon dispersion is missing
a finite contribution coming from the mixing between longitudinal and transverse degrees
of freedom at small momenta, therefore it fails in this region of the momentum space. We
already addressed such issue in a previous work, where we provided a complete description
of plasma excitations in layered superconductors, including such mixed longitudinal-
transverse contribution and thus valid at different energy and momentum scales, within
the effective action formalism [10]. In this paper we show how a similar description can
be achieved within the classic framework of Maxwell equations.

2. – Longitudinal-transverse mixing and generalized plasma waves in layered
systems

In a superconducting medium at zero temperature, Maxwell’s equations acquire a non-
zero current term 4πJ/c taking into account the flow of superfluid electrons. The internal
current J is related to the internal electric field E via the equation J = σ̂E, where the
conductivity tensor σ̂ is given by the first London equation [11]. For example, in an
isotropic system, conductivity reduces to a scalar, i.e., σij = σδij , where σ = ne2/(−iωm)
(as given by the isotropic London equation), n being the density of superfluid electrons,
m being the isotropic electron effective mass. In such a situation, J is parallel to E, hence
the former can be recast as J = σET+σEL, where EL = (q̂ ·E)q̂ and ET = E−EL are,
respectively, the longitudinal (q̂ ×EL = 0) and the transverse (q̂ ·ET = 0) components
of the electric field with respect to the direction q̂ = q/|q| set by the wavevector q.
The previous equation for the isotropic current leads, along with Maxwell’s equations,
to eqs. (1), which describe the propagation of two uncoupled pure modes, i.e., a purely
transverse mode (the e.m. wave) and a purely longitudinal mode (the plasmon): for
this reason, the isotropic e.m. modes are said to admit an exact longitudinal-transverse
decomposition.
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In layered systems, the stacked structure along the out-of-plane direction manifests
as an anisotropy of the effective mass with respect to the crystallographic axes, i.e.,
mab �= mc. This implies σab �= σc. In such a situation J is not parallel to E, and a
longitudinal-transverse decomposition of the e.m. modes is not achievable in general. In
order to see this fact one can rotate the conductivity tensor σ̂ into the basis spanned by
EL and ET. Let qab/c be the in-plane/out-of-plane component of q. Starting from EL =
(q̂ ·E)q̂ and ET = (q̂ ×E)× q̂ one finds that the rotation matrix among the Cartesian

basis and the (EL,ET) basis reads Û(q) =
(

qab qc
−qc qab

)
/|q|. The conductivity tensor

σ̂LT in longitudinal-transverse coordinates can then be computed as:

(2) σ̂LT(q) = Û(q)σ̂ÛT(q) =

(
σL σmix

σmix σT

)

where we denoted the purely longitudinal and the purely transverse elements of the
anisotropic conductivity by σL =

(
σabq

2
ab + σcq

2
c

)
/|q|2 and σT =

(
σabq

2
c + σcq

2
ab

)
/|q|2

respectively, while σmix = − (σab − σc) qabqc/|q|2. It is worth noting that, in the isotropic
limit σab = σc = σ, σmix vanishes and σL/T = σ, so that a purely diagonal conductiv-
ity, which leads to the exact longitudinal-transverse decomposition of the isotropic e.m.
modes, is recovered. In a layered system, due to σab �= σc, σmix is, in general, finite
and the conductivity tensor is non-diagonal in the (EL,ET) basis: therefore, an exact
longitudinal-transverse decomposition of the e.m. modes is not always allowed. Indeed,

putting the anisotropic current J =
(

σL σmix

σmix σT

)(
EL

ET

)
into Maxwell’s equations

yields an eigenvalue problem whose solutions are not, in general, purely longitudinal
or purely transverse: they are mixed longitudinal-transverse. The strength of such
mixing will depend on the overall magnitude of the non-diagonal element σmix. Since
σab/c = ne2/(−iωmab/c), as given by the anisotropic London equation, one would find

that σmix = −εB(ω
2
ab − ω2

c )/(4πiω)qabqc/|q|2, ωab/c =
√

(4πe2n)/(εBmab/c) being the
in-plane/out-of-plane plasma frequency. Further, one can define the crossover momen-
tum qcr ≡

√
ω2
ab − ω2

c/c̃, so that σmix can be recast as σmix = c2qabqc/(4πiω)q
2
cr/|q|2:

the magnitude of σmix is then set by ratio q2cr/|q|2. At large momenta, i.e., for wavevec-
tors much bigger than the crossover value (|q| � qcr), σmix vanishes, the off-diagonal
elements of (2) can then be neglected and one finds a purely transverse and a purely lon-
gitudinal mode, the latter propagating at ω2

L = 4πωσL/(iεB) =
(
ω2
abq

2
ab + ω2

cq
2
c

)
/|q|2

(i.e., the standard layered plasmon). To get an idea on the order of magnitude of
the momenta for which such regime is attained one can consider the typical values
of the plasma energies in layered materials, which are such that ωc � ωab, with
ωab � 1 eV, ωc � 10−3 eV, and the value of the light velocity c̃ � 0.19 eVμm, thus
finding that qcr � 5μm−1: therefore, as soon as |q| � 5μm−1, σmix can be neglected
and the standard layered plasmon is recovered. Conversely, at |q| � 5μm−1, σmix is
finite and can not therefore be neglected. In such case one would find two modes with
mixed longitudinal-transverse character, valid at different energy and momentum scales:
they consist of a quasi-transverse mode (i.e., a predominantly transverse mode with a
finite longitudinal projection) and a quasi-longitudinal mode (i.e., a predominantly lon-
gitudinal mode with a finite transverse projection). Such generalized-plasmon solutions
have already been discussed by us in a recent work [10]. Here we focus on the quasi-
longitudinal one ωQL, whose momentum dependence we show in fig. 1 at selected values
of the angle η between q and the c axis. We also show, for comparison, the standard
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Fig. 1. – Momentum dependence of ωQL (solid line) at selected value of η. We also show for
comparison ωL (dashed line) and ωJ (dot-dashed line).

layered plasmon ωL and the low-energy JPM ωJ. Indeed, ωQL interpolates between the
large-momentum dispersion ωL and the low-momentum, low-energy dispersion ωJ. As
already discussed, the standard layered plasmon ωL is recovered as soon as |q| is bigger
than the crossover value qcr � 5μm−1. Such behaviour is evident from fig. 1: as soon
as |q| > 5μm−1, ωQL tends to the dispersion ωL. On the other hand, the discrepancy
between ωQL and ωL below the crossover value becomes crucial in order to understand
the radically different description of the JPM, which is attained at low momentum and
low energy, i.e., for ω such that ω ∼ ωc � ωab: indeed, as shown in fig. 1, the JPM
dispersion ωJ accounts for the correct behaviour of ωQL at energies around ωc and small
momenta, i.e., in the region where the standard layered plasmon ωL fails.

In conclusion, we provided a full description of plasmons in bulk layered supercon-
ductors, which we already addressed in detail in ref. [10], by solving Maxwell’s equations
with an anisotropic current term. By properly including the mixing between transverse
and longitudinal components of the e.m. fields, mixing which is absent in isotropic sys-
tems and which has been partly overlooked in layered systems so far, we were able to
identify a generalized plasma mode, valid at generic energy and momentum. Such so-
lution fills the knowledge gap among previous results, that focused on specific regions
of the energy/momentum spectrum of the plasmon. The present results, despite having
been derived for the SC state, can also be generalized to the normal state, provided that
the plasmon damping induced at low energy by the presence of particle-hole excitations,
which is absent at low temperatures in superconductors, is properly taken into account.
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