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Kinematics and rotation of a vortex lattice in a polariton fluid
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Summary. — We study the kinematic properties of a rotating vortex lattice
imprinted on a freely expanding polariton quantum fluid. Thanks to the optical
component of polaritons, we can directly measure the phase and modulus of the
complex-valued macroscopic wavefunction, and extract the velocity and angular
momentum profiles across the condensate. These are in agreement with quantisa-
tion prescription, although the non-uniform and unsteady background density profile
may induce corrections to the vortex trajectories, and result into fractional orbital
angular momentum per particle.

1. – Introduction

In the last decades, a rich research activity has emerged about the dynamics of phase
singularities in light fields, giving rise to the modern field of singular optics [1]. When
light propagates in a nonlinear medium, the vortex dynamics is often described in terms
of quantum fluids of light, based on the well-known analogy between quantum gases,
nonlinear optics and fluid dynamics [2]. Exciton-polaritons are a paradigmatic example
of quantum fluids of light, particularly interesting for their intrinsic out-of-equilibrium
nature and significant optical nonlinearities [3, 4].

Exciton-polaritons (polaritons for short) are bosonic quasi-particles which result from
the strong coupling between light (photons) and matter (excitons) in semiconductor op-
tical microcavities with embedded quantum wells [5,6]. Interestingly, the polariton effec-
tive mass is very small (about 10−5 me) and, depending on the semiconductor material
properties, condensation can take place at high critical temperatures, over a wide range
of values limited only by the ionization of the exciton (generally 10–300K) [7-9]. The
non-conservative character of the system is due to the unavoidable radiative decay of the
optical microcavity and, in most cases, the dynamics is well described by a generalized
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Fig. 1. – Rotating polariton lattice of n2 = 49 equal charge vortices. (a) The macroscopic
wave function amplitude field ψ(x) on top of the corresponding phase field ϕ(x), showing the
singularity lattice. (b) Normalized amplitude of ψ(x, t) at two different times, showing the
rigid-like rotation of the system. (c), (d) Direction streamlines and normalized intensity maps
of the momentum field, underlying the dynamics.

2D Gross-Pitaevskii (GP) equation, where the driven-dissipative character of polaritons
is suitably taken into account [10].

Recently, we investigated the spatial and temporal properties of regular lattices of
n×n quantised vortices in untrapped polariton fluid [11], which rotate and simultaneously
expand. In this paper, we focus on the kinematic properties of the vortex lattice in terms
of the spatial profile of momentum and orbital angular momentum, highlighting general
features common to any planar, or quasi-planar superfluid, and to other singular optics
configurations.

2. – Vortex lattices in polariton condensates

We use a semiconductor planar microcavity with 12 GaAs quantum wells sandwiched
between two distributed Bragg reflectors with high quality factor (Q = 10000). The
exciton-polariton condensate inherits the phase profile from the suitably modulated laser
resonant excitation. Once the laser pulse is over, the polariton condensate, showing the
imprinted regular lattice of vortices, is free to rotate and expand. Details of the exper-
iment can be found in the Supplementary Information of [11]. In the condensed state,

the polariton fluid is described by a macroscopic wavefunction ψ(x, t) =
√

N(x, t)eiϕ(x,t)

which obeys the GP equations. In fig. 1, in the left panel we plot a snapshot of the spatial
distribution of the (square root) density |ψ(x)| and phase ϕ(x) of the polariton fluid in
the 2D plane of the microcavity, obtained by means of the digital off-axis holography
technique [12]. The density pattern is clearly not uniform, being the result of the initial,
centered Gaussian profile of the laser beam shined onto a spatial light modulator which
is mandated to shape the vortex lattice phase pattern [11]. Each vortex core, being a
singularity of the phase and a divergence of the transverse momentum, is also associated
to a zero of the density. We emphasize that such a 2D initial state is necessarily set
into a rotational motion, with initial azimuthal velocities due to the vortex pattern itself.
As time elapses, in the absence of a trap, both the density and the contained vortex
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cores move outward, never reaching a steady profile. The observed expansion is hence
mainly the result of the initial tangential velocities remaining basically constant(1), but
with asymptotically larger centrifugal projection due to the renewed positions. Hence,
fig. 1(b) shows that a quasi-rigid rotation appears over a time span of few tens of ps.
In fig. 1(c),(d), we also show the momentum maps, ∝ k(x) = ∇ϕ(x), plotting both its
direction and intensity. Thanks to the phase and momentum maps, we observe that each
unit of the lattice contributes to the build up of azimuthal momenta and velocities which
scale (approximately) linear with the radial distance from the lattice center. Moreover,
the lattices shape is preserved, thanks to the radial linear scaling of the initially im-
printed velocities, which is the same associated to a rigid rotation. To gain quantitative
insight, we can track individual vortex movements and use their positions as a measure
of the dynamical evolution, for a time window of about 80 picoseconds, in a very good
agreement with this phase gradient inferred velocity.

The Feynman-Onsager relation [13] between the angular rotation frequency Ω and
the vortex density ∝ 1/d2, prescribes at any instant

Ω =
h

2m

1

d2
,(1a)

where d is the inter-vortex separation. In [11], we showed that in our experiments such
relation is weakly verified, in the sense that a small but measurable deviation is present.
We explained such deviation in terms of a Magnus-like effect, i.e., a transverse velocity
component, in the movement of the vortex cores only, induced by the radial density
gradients in the polariton fluid’s bell-shape envelope.

As it is well known, the Feynman-Onsager relation is based on the hypothesis that
the condensate rotates in a rigid-body movement, such that the fluid, irrotational for
simply connected regions, effectively appears as rotational in a coarse grained picture.
As a result, in the lattice region, we can define an azimuthal velocity v = (Ω × r) · êθ.
Such an approximation can be appreciated in fig. 2, where we extract from the phase map
the azimuthal momentum kθ(r) as a function of the radial distance from the condensate
center. Apart from the diverging value assumed in the core of the central vortex, kθ(r)
builds up in a coarsely linear way with r, assuming locally the hyperbolic dependence
matched to the circulation of an increasing number of vortices. The quantised nature of
vorticity in the condensate unambiguously manifests in the radial profile of the associated
orbital angular momentum (OAM), here measured as ∼ kθ(r)r (or, in other terms, as
the circulation of phase). Once the edge of the lattice is achieved, the OAM remains
quantized to the total number of vortices (here n2 = 49) from there on. As for the
azimuthal momentum, it starts to decrease as n2/r, as for an irrotational fluid with all
the vortices in the center.

In summary, the possibility of accessing both the density and phase maps in a polari-
ton fluid allows appreciating the features of combined rotational and irrotational motions
in different regions of the same experiments, as well as highlighting the typical quantized
behavior of the OAM build up. Note that because of the presence of a great amount of
polariton particles in the lattice interior (see the radial particle number profile in fig. 2),
the total OAM per particle —weighted with the mass radial distribution— can be frac-
tional, and smaller than the total number of vortices in the condensate. This conveys

(1) In case of a nonlinear system, the expansion is initially accelerated by particle repulsion.
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Fig. 2. – (left panel) The radial distributions of the azimuthal momentum (blue triangles), the
associated orbital angular momentum (OAM) (red circles). (right panel) The number density
radial profile N(r) (grey shaded area). All retrieved from the experiment at initial time. The
azimuthal momentum kθ is spatially averaged (along any circle, without weighting with the
density); the OAM is here the phase circulation, obtained by multiplying kθ by 2π the radius.
When these two quantities or the density are uniform on a circle, they assume the meaning of
momentum and OAM per particle. The distributions help to understand why the total OAM
per particle is intermediate (OAM = 14) wrt the vortex charge (n2 = 49). The inset schemes
in the left panel visualize the newly encircled vortices when progressively increasing the radius,
with the associated hyperbolic line for kθ also associated to the quantized steps in the OAM
build up.

the idea that, despite the fact that each phase singularity can exert a torque in its close
vicinity, there is no direct association between the number of vortices and the integrated
OAM for general beams [14] (a preserved association when all the phase singularities are
on-axis).
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